Christoph Rameshan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5430111/publications.pdf

Version: 2024-02-01

73 papers 2,596 citations

28 h-index 197535 49 g-index

76 all docs

76 docs citations

76 times ranked 3268 citing authors

#	Article	IF	CITATIONS
1	AgAu nanoclusters supported on zeolites: Structural dynamics during CO oxidation. Catalysis Today, 2022, 384-386, 166-176.	2.2	13
2	Performance modulation through selective, homogenous surface doping of lanthanum strontium ferrite electrodes revealed by <i>in situ</i> PLD impedance measurements. Journal of Materials Chemistry A, 2022, 10, 2973-2986.	5.2	6
3	CO Oxidation Capabilities of La- and Nd-Based Perovskites. Fuels, 2022, 3, 31-43.	1.3	3
4	The state of zinc in methanol synthesis over a Zn/ZnO/Cu(211) model catalyst. Science, 2022, 376, 603-608.	6.0	65
5	Interplay between CO Disproportionation and Oxidation: On the Origin of the CO Reaction Onset on Atomic Layer Deposition-Grown Pt/ZrO ₂ Model Catalysts. ACS Catalysis, 2021, 11, 208-214.	5. 5	27
6	Hybrid carbon spherogels: carbon encapsulation of nano-titania. Chemical Communications, 2021, 57, 3905-3908.	2.2	7
7	Exsolution Catalysts—Increasing Metal Efficiency. Encyclopedia, 2021, 1, 249-260.	2.4	2
8	In situ XPS studies of MoS ₂ -based CO ₂ hydrogenation catalysts. Journal Physics D: Applied Physics, 2021, 54, 324002.	1.3	22
9	Novel perovskite catalysts for CO2 utilization - Exsolution enhanced reverse water-gas shift activity. Applied Catalysis B: Environmental, 2021, 292, 120183.	10.8	26
10	Comparison of novel Ni doped exsolution perovskites as methane dry reforming catalysts. E3S Web of Conferences, 2021, 266, 02019.	0.2	2
11	In Situ Growth of Exsolved Nanoparticles under Varying rWGS Reaction Conditions—A Catalysis and Near Ambient Pressure-XPS Study. Catalysts, 2021, 11, 1484.	1.6	7
12	Dynamics of Pd Dopant Atoms inside Au Nanoclusters during Catalytic CO Oxidation. Journal of Physical Chemistry C, 2020, 124, 23626-23636.	1.5	28
13	Novel Sample-Stage for Combined Near Ambient Pressure X-ray Photoelectron Spectroscopy, Catalytic Characterization and Electrochemical Impedance Spectroscopy. Crystals, 2020, 10, 947.	1.0	20
14	Absorbance-based Spectroelectrochemical Sensor for Determination of Ampyra Based on Electrochemical Preconcentration. Sensors and Actuators B: Chemical, 2020, 324, 128723.	4.0	14
15	Coverage-Induced Orientation Change: CO on $Ir(111)$ Monitored by Polarization-Dependent Sum Frequency Generation Spectroscopy and Density Functional Theory. Journal of Physical Chemistry C, 2020, 124, 18102-18111.	1.5	9
16	An ultrahigh vacuum-compatible reaction cell for model catalysis under atmospheric pressure flow conditions. Review of Scientific Instruments, 2020, 91, 125101.	0.6	3
17	High Temperature Water Gas Shift Reactivity of Novel Perovskite Catalysts. Catalysts, 2020, 10, 582.	1.6	14
18	Modifying the Surface Structure of Perovskite-Based Catalysts by Nanoparticle Exsolution. Catalysts, 2020, 10, 268.	1.6	32

#	Article	IF	CITATIONS
19	Chemically Selective Imaging of Individual Bonds through Scanning Electron Energy-Loss Spectroscopy: Disulfide Bridges Linking Gold Nanoclusters. Journal of Physical Chemistry Letters, 2020, 11, 796-799.	2.1	3
20	Ca-doped rare earth perovskite materials for tailored exsolution of metal nanoparticles. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2020, 76, 1055-1070.	0.5	15
21	Ligand and support effects on the reactivity and stability of Au38(SR)24 catalysts in oxidation reactions. Catalysis Communications, 2019, 130, 105768.	1.6	13
22	A Non-Enzymatic Glucose Sensor Based on the Hybrid Thin Films of Cu on Acetanilide/ITO. Journal of the Electrochemical Society, 2019, 166, B1116-B1125.	1.3	22
23	CO2 activation on ultrathin ZrO2 film by H2O co-adsorption: In situ NAP-XPS and IRAS studies. Surface Science, 2019, 679, 139-146.	0.8	38
24	Support effect on the reactivity and stability of Au25(SR)18 and Au144(SR)60 nanoclusters in liquid phase cyclohexane oxidation. Catalysis Today, 2019, 336, 174-185.	2.2	33
25	Roughening of Copper (100) at Elevated CO Pressure: Cu Adatom and Cluster Formation Enable CO Dissociation. Journal of Physical Chemistry C, 2019, 123, 8112-8121.	1.5	30
26	Tailored exsolution of metal nanoparticles: structural and chemical characterisation of doped perovskites by XPS and XRD. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, e314-e314.	0.0	0
27	Structural modification of perovskites by tailored exsolution for enhanced catalytic activity. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, e322-e322.	0.0	0
28	Ice Nucleation Activity of Graphene and Graphene Oxides. Journal of Physical Chemistry C, 2018, 122, 8182-8190.	1.5	29
29	Polarization-Dependent SFG Spectroscopy of Near Ambient Pressure CO Adsorption on Pt(111) and Pd(111) Revisited. Topics in Catalysis, 2018, 61, 751-762.	1.3	11
30	Atmospheric pressure reaction cell for operando sum frequency generation spectroscopy of ultrahigh vacuum grown model catalysts. Review of Scientific Instruments, 2018, 89, 045104.	0.6	17
31	Surface science approach to Pt/carbon model catalysts: XPS, STM and microreactor studies. Applied Surface Science, 2018, 440, 680-687.	3.1	47
32	Vibrational fingerprint of localized excitons in a two-dimensional metal-organic crystal. Nature Communications, 2018, 9, 4703.	5.8	18
33	Ligand Migration from Cluster to Support: A Crucial Factor for Catalysis by Thiolateâ€protected Gold Clusters. ChemCatChem, 2018, 10, 5341-5341.	1.8	0
34	The Chemical Evolution of the La0.6Sr0.4CoO3â^'Î' Surface Under SOFC Operating Conditions and Its Implications for Electrochemical Oxygen Exchange Activity. Topics in Catalysis, 2018, 61, 2129-2141.	1.3	65
35	Ligand Migration from Cluster to Support: A Crucial Factor for Catalysis by Thiolateâ€protected Gold Clusters. ChemCatChem, 2018, 10, 5372-5376.	1.8	44
36	<i>In situ</i> NAP-XPS spectroscopy during methane dry reforming on ZrO ₂ /Pt(1 1 1) invested model catalyst. Journal of Physics Condensed Matter, 2018, 30, 264007.	erse 6.7	32

#	Article	IF	Citations
37	Impregnated and Co-precipitated Pd–Ga2O3, Pd–In2O3 and Pd–Ga2O3–In2O3 Catalysts: Influence of the Microstructure on the CO2 Selectivity in Methanol Steam Reforming. Catalysis Letters, 2018, 148, 3062-3071.	ne 1.4	21
38	Novel visible-light-sensitized Chl-Mg/P25 catalysts for photocatalytic degradation of rhodamine B. Applied Catalysis B: Environmental, 2017, 207, 326-334.	10.8	43
39	Synthesis and Properties of Monolayer-Protected Co _{<i>x</i>} (SC ₂ H ₄ Ph) _{<i>m</i>} Nanoclusters. Journal of Physical Chemistry C, 2017, 121, 10948-10956.	1.5	14
40	Surface Chemistry of Perovskite-Type Electrodes During High Temperature CO ₂ Electrolysis Investigated by <i>Operando</i> Photoelectron Spectroscopy. ACS Applied Materials & Applied & Applied Materials & Applied & App	4.0	107
41	Aerosol-assisted CVD of thioether-functionalised indium aminoalkoxides. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2017, 148, 1385-1392.	0.9	4
42	CO Adsorption on Reconstructed Ir(100) Surfaces from UHV to mbar Pressure: A LEED, TPD, and PM-IRAS Study. Journal of Physical Chemistry C, 2016, 120, 10838-10848.	1.5	25
43	Operando XAS and NAP-XPS studies of preferential CO oxidation on Co3O4 and CeO2-Co3O4 catalysts. Journal of Catalysis, 2016, 344, 1-15.	3.1	126
44	Surface Spectroscopy on UHV-Grown and Technological Ni–ZrO2 Reforming Catalysts: From UHV to Operando Conditions. Topics in Catalysis, 2016, 59, 1614-1627.	1.3	16
45	Thioether functionalised gallium and indium alkoxides in materials synthesis. New Journal of Chemistry, 2016, 40, 6962-6969.	1.4	5
46	Ambient Pressure XPS Study of Mixed Conducting Perovskite-Type SOFC Cathode and Anode Materials under Well-Defined Electrochemical Polarization. Journal of Physical Chemistry C, 2016, 120, 1461-1471.	1.5	132
47	Enhancing Electrochemical Waterâ€Splitting Kinetics by Polarizationâ€Driven Formation of Nearâ€Surface Iron(0): An Inâ€Situ XPS Study on Perovskiteâ€Type Electrodes. Angewandte Chemie, 2015, 127, 2666-2670.	1.6	12
48	Frontispiz: Enhancing Electrochemical Water-Splitting Kinetics by Polarization-Driven Formation of Near-Surface Iron(0): An Inâ€Situ XPS Study on Perovskite-Type Electrodes. Angewandte Chemie, 2015, 127, n/a-n/a.	1.6	0
49	Aqueous solution/metal interfaces investigated in operando by photoelectron spectroscopy. Faraday Discussions, 2015, 180, 35-53.	1.6	99
50	Water adsorption on polycrystalline vanadium from ultra-high vacuum to ambient relative humidity. Surface Science, 2015, 641, 141-147.	0.8	16
51	Frontispiece: Enhancing Electrochemical Water-Splitting Kinetics by Polarization-Driven Formation of Near-Surface Iron(0): An Inâ€Situ XPS Study on Perovskite-Type Electrodes. Angewandte Chemie - International Edition, 2015, 54, n/a-n/a.	7.2	0
52	Growth of an Ultrathin Zirconia Film on Pt ₃ Zr Examined by High-Resolution X-ray Photoelectron Spectroscopy, Temperature-Programmed Desorption, Scanning Tunneling Microscopy, and Density Functional Theory. Journal of Physical Chemistry C, 2015, 119, 2462-2470.	1.5	46
53	Enhancing Electrochemical Waterâ€Splitting Kinetics by Polarizationâ€Driven Formation of Nearâ€Surface Iron(0): An Inâ€Situ XPS Study on Perovskiteâ€Type Electrodes. Angewandte Chemie - International Edition, 2015, 54, 2628-2632.	7.2	110
54	Reversible Modification of the Structural and Electronic Properties of a Boron Nitride Monolayer by CO Intercalation. ChemPhysChem, 2015, 16, 923-927.	1.0	18

#	Article	IF	Citations
55	Water Splitting on Model-Composite La _{0.6} Sr _{0.4} FeO _{3-Î} (LSF) Electrodes in H ₂ /H ₂ O Atmosphere. ECS Transactions, 2015, 68, 3333-3343.	0.3	4
56	Combined UHV/high-pressure catalysis setup for depth-resolved near-surface spectroscopic characterization and catalytic testing of model catalysts. Review of Scientific Instruments, 2014, 85, 055104.	0.6	15
57	PdZn Surface Alloys as Models of Methanol Steam Reforming Catalysts: Molecular Studies by LEED, XPS, TPD and PM-IRAS. Topics in Catalysis, 2014, 57, 1218-1228.	1.3	13
58	From Oxideâ€Supported Palladium to Intermetallic Palladium Phases: Consequences for Methanol Steam Reforming. ChemCatChem, 2013, 5, 1273-1285.	1.8	41
59	CO2-selective methanol steam reforming on In-doped Pd studied by in situ X-ray photoelectron spectroscopy. Journal of Catalysis, 2012, 295, 186-194.	3.1	53
60	Hydrogen Production by Methanol Steam Reforming on Copper Boosted by Zincâ€Assisted Water Activation. Angewandte Chemie - International Edition, 2012, 51, 3002-3006.	7.2	79
61	How to Control the Selectivity of Palladiumâ€based Catalysts in Hydrogenation Reactions: The Role of Subsurface Chemistry. ChemCatChem, 2012, 4, 1048-1063.	1.8	223
62	In situ XPS study of methanol reforming on PdGa near-surface intermetallic phases. Journal of Catalysis, 2012, 290, 126-137.	3.1	48
63	Surface-assisted laser desorption/ionization-mass spectrometry using TiO2-coated steel targets for the analysis of small molecules. Analytical and Bioanalytical Chemistry, 2011, 401, 1963-1974.	1.9	41
64	Preparation and structural characterization of SnO2 and GeO2 methanol steam reforming thin film model catalysts by (HR)TEM. Materials Chemistry and Physics, 2010, 122, 623-629.	2.0	25
65	Steam reforming of methanol on PdZn near-surface alloys on Pd(1 $1\ 1$) and Pd foil studied by in-situ XPS, LEIS and PM-IRAS. Journal of Catalysis, 2010, 276, 101-113.	3.1	68
66	Subsurfaceâ€Controlled CO ₂ Selectivity of PdZn Nearâ€Surface Alloys in H ₂ Generation by Methanol Steam Reforming. Angewandte Chemie - International Edition, 2010, 49, 3224-3227.	7.2	144
67	Pd–In2O3 interaction due to reduction in hydrogen: Consequences for methanol steam reforming. Applied Catalysis A: General, 2010, 374, 180-188.	2.2	82
68	Origin of different deactivation of Pd/SnO2 and Pd/GeO2 catalysts in methanol dehydrogenation and reforming: A comparative study. Applied Catalysis A: General, 2010, 381, 242-252.	2.2	24
69	Catalytic characterization of pure SnO2 and GeO2 in methanol steam reforming. Applied Catalysis A: General, 2010, 375, 188-195.	2.2	23
70	Temperature-Induced Modifications of PdZn Layers on Pd(111). Journal of Physical Chemistry C, 2010, 114, 10850-10856.	1.5	46
71	Pd/Ga2O3 methanol steam reforming catalysts: Part I. Morphology, composition and structural aspects. Applied Catalysis A: General, 2009, 358, 193-202.	2.2	71
72	Pd/Ga2O3 methanol steam reforming catalysts: Part II. Catalytic selectivity. Applied Catalysis A: General, 2009, 358, 203-210.	2.2	51

#	Article	IF	CITATIONS
73	How Greenhouse Gases Can Be Used to Store Energy. Frontiers for Young Minds, 0, 8, .	0.8	0