Catherine Pinel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5430062/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal–Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie - International Edition, 2009, 48, 7502-7513.	7.2	1,732
2	Conversion of Biomass into Chemicals over Metal Catalysts. Chemical Reviews, 2014, 114, 1827-1870.	23.0	1,504
3	Glycerol hydrogenolysis on heterogeneous catalysts. Green Chemistry, 2004, 6, 359.	4.6	436
4	Cellulose hydrothermal conversion promoted by heterogeneous BrÃ,nsted and Lewis acids: Remarkable efficiency of solid Lewis acids to produce lactic acid. Applied Catalysis B: Environmental, 2011, 105, 171-181.	10.8	229
5	Generic Postfunctionalization Route from Amino-Derived Metalâ^'Organic Frameworks. Journal of the American Chemical Society, 2010, 132, 4518-4519.	6.6	181
6	Solvent free base catalysis and transesterification over basic functionalised Metal-Organic Frameworks. Green Chemistry, 2009, 11, 1729.	4.6	135
7	Aqueous-Phase Hydrogenation of Biomass-Based Succinic Acid to 1,4-Butanediol Over Supported Bimetallic Catalysts. Topics in Catalysis, 2010, 53, 1270-1273.	1.3	118
8	Heterogeneous Catalytic Hydrogenation of Biobased Levulinic and Succinic Acids in Aqueous Solutions. ChemSusChem, 2013, 6, 2388-2395.	3.6	114
9	Non-catalyzed and Pt/γ-Al2O3-catalyzed hydrothermal cellulose dissolution–conversion: influence of the reaction parameters and analysis of the unreacted cellulose. Green Chemistry, 2009, 11, 2052.	4.6	106
10	Unravelling the Mechanism of Glycerol Hydrogenolysis over Rhodium Catalyst through Combined Experimental–Theoretical Investigations. Chemistry - A European Journal, 2011, 17, 14288-14299.	1.7	99
11	Cellulose reactivity and glycosidic bond cleavage in aqueous phase by catalytic and non catalytic transformations. Applied Catalysis A: General, 2011, 402, 1-10.	2.2	82
12	lonic imprinted resins based on EDTA and DTPA derivatives for lanthanides(III) separation. Analytica Chimica Acta, 2001, 435, 75-82.	2.6	79
13	Effect of Addition Mode of Re in Bimetallic Pd–Re/TiO2 Catalysts Upon the Selective Aqueous-Phase Hydrogenation of Succinic Acid to 1,4-Butanediol. Topics in Catalysis, 2012, 55, 466-473.	1.3	78
14	Study of Monometallic Pd/TiO ₂ Catalysts for the Hydrogenation of Succinic Acid in Aqueous Phase. ACS Catalysis, 2013, 3, 2327-2335.	5.5	72
15	Chiral nitrogen-metal complexes for the asymmetric reduction of ketones. Tetrahedron: Asymmetry, 1997, 8, 2101-2108.	1.8	71
16	On the role of the atmosphere in the catalytic glycerol transformation over iridium-based catalysts. Catalysis Communications, 2011, 16, 144-149.	1.6	67
17	Evaluation of surface properties and pore structure of carbon on the activity of supported Ru catalysts in the aqueous-phase aerobic oxidation of HMF to FDCA. Applied Catalysis A: General, 2015, 506, 206-219.	2.2	65
18	lonic imprinting effect in gadolinium/lanthanum separation. Tetrahedron Letters, 1998, 39, 8651-8654.	0.7	64

#	Article	IF	CITATIONS
19	Green synthesis of xylan hemicellulose esters. Carbohydrate Research, 2011, 346, 2896-2904.	1.1	62
20	From glycerol to lactic acid under inert conditions in the presence of platinum-based catalysts: The influence of support. Catalysis Today, 2015, 257, 267-273.	2.2	61
21	Diastereoselective Hydrogenation of Substituted Aromatics on Supported Metal Catalysts. Journal of Catalysis, 1997, 170, 254-264.	3.1	60
22	Heterogeneous Transformation of Glycerol to Lactic Acid. Topics in Catalysis, 2012, 55, 474-479.	1.3	60
23	Green approach to substituted carbohydrates: telomerisation of butadiene with sucrose. Green Chemistry, 2001, 3, 175-177.	4.6	59
24	Insights into the Oxidation State and Location of Rhenium in Reâ€Pd/TiO ₂ Catalysts for Aqueousâ€Phase Selective Hydrogenation of Succinic Acid to 1,4â€Butanediol as a Function of Palladium and Rhenium Deposition Methods. ChemCatChem, 2015, 7, 2161-2178.	1.8	58
25	Aerobic Oxidation of Glucose to Glucaric Acid under Alkaline-Free Conditions: Au-Based Bimetallic Catalysts and the Effect of Residues in a Hemicellulose Hydrolysate. Industrial & Engineering Chemistry Research, 2017, 56, 13175-13189.	1.8	57
26	Preparation and utilization of molecularly imprinted silicas. Advanced Materials, 1997, 9, 582-585.	11.1	56
27	Cationisation of galactomannan and xylan hemicelluloses. Carbohydrate Polymers, 2011, 85, 138-148.	5.1	53
28	From Native Starch to Hydrophilic and Hydrophobic Products: A Catalytic Approach. Topics in Catalysis, 2004, 27, 67-76.	1.3	52
29	Combinatorial synthesis of metal–organic frameworks libraries by click-chemistry. New Journal of Chemistry, 2011, 35, 1892.	1.4	51
30	On the key role of hydroxyl groups in platinum-catalysed alcohol oxidation in aqueous medium. Catalysis Science and Technology, 2013, 3, 339-350.	2.1	51
31	Sustainability metrics for a fossil- and renewable-based route for 1,2-propanediol production: A comparison. Catalysis Today, 2015, 239, 31-37.	2.2	51
32	Catalytic transformation of glycerol on several metal systems supported on ZnO. Catalysis Today, 2012, 196, 91-100.	2.2	49
33	Palladium-Catalyzed Telomerization of Butadiene with Starch. Advanced Synthesis and Catalysis, 2002, 344, 906-910.	2.1	47
34	Active carbons as catalysts for liquid phase reactions. Catalysis Today, 2005, 102-103, 160-165.	2.2	47
35	(R,R) dipamp-ruthenium (II) (2-methylallyl)2 : Synthesis and selected use in asymmetric hydrogenation Tetrahedron Letters, 1992, 33, 5343-5346.	0.7	45
36	Promoting effect of water for aliphatic primary and secondary alcohol oxidation over platinum catalysts in dioxane/aqueous solution media. Catalysis Today, 2011, 173, 81-88.	2.2	45

#	Article	IF	CITATIONS
37	Influence of the Re introduction method onto Pd/TiO2 catalysts for the selective hydrogenation of succinic acid in aqueous-phase. Catalysis Today, 2014, 235, 127-133.	2.2	45
38	"Molecular imprinting effect―in the synthesis of immobilized rhodium complex Catalyst (IRC cat). Tetrahedron Letters, 1995, 36, 8779-8782.	0.7	43
39	Asymmetric Synthesis of 2-Methyl Cyclohexane Carboxylic Acids by Heterogeneous Catalysis: Mechanistic Aspects. Chemistry - A European Journal, 2000, 6, 949-958.	1.7	43
40	Tailoring metal–organic framework catalysts by click chemistry. Dalton Transactions, 2012, 41, 3945.	1.6	40
41	Preparation of functional styrenes from biosourced carboxylic acids by copper catalyzed decarboxylation in PEG. Green Chemistry, 2014, 16, 3089.	4.6	39
42	Selective Câ^'O Hydrogenolysis of Erythritol over Supported Rhâ€ReO _{<i>x</i>} Catalysts in the Aqueous Phase. ChemCatChem, 2017, 9, 2768-2783.	1.8	39
43	Use of heterogenized dialdimine ligands in asymmetric transfer hydrogenation. Tetrahedron: Asymmetry, 1998, 9, 897-900.	1.8	38
44	Effect of Au on Pd supported over HMS and Ti doped HMS as catalysts for the hydrogenation of levulinic acid to Î ³ -valerolactone. Catalysis Today, 2015, 257, 291-296.	2.2	38
45	Diastereoselective hydrogenation of o-toluic acid derivatives over supported rhodium and ruthenium heterogeneous catalysts. Chemical Communications, 1998, , 1431-1432.	2.2	37
46	Efficient Heterogeneously Palladium-Catalysed Heck Arylation of Acrolein Diethyl Acetal. Selective Synthesis of Cinnamaldehydesor 3-Arylpropionic Esters. Advanced Synthesis and Catalysis, 2007, 349, 1128-1140.	2.1	37
47	New chiral bis(oxazoline) Rh(I)-, Ir(I)- and Ru(II)-complexes for asymmetric transfer hydrogenations of ketones. Tetrahedron Letters, 2004, 45, 2235-2238.	0.7	36
48	Efficient heterogeneous vinylation of aryl halides using potassium vinyltrifluoroborate. Tetrahedron Letters, 2008, 49, 4738-4741.	0.7	34
49	Oneâ€Pot Suzuki/Heck Sequence for the Synthesis of (<i>E</i>)‣tilbenes Featuring a Recyclable Silica‣upported Palladium Catalyst <i>via</i> a Multi omponent Reaction in 1,3â€Propanediol. Advanced Synthesis and Catalysis, 2010, 352, 1993-2001.	2.1	34
50	Shape selectivity for alkane hydroxylation with a new class of phosphonate-based heterogenised manganese porphyrins. New Journal of Chemistry, 1998, 22, 901-905.	1.4	33
51	Mixed N-heterocyclic carbene and phosphine palladium complexes for telomerization of butadiene with methanol. Applied Catalysis A: General, 2009, 368, 22-28.	2.2	33
52	Asymmetric Synthesis of AntiN-Boc-α-Hydrazino-β-Hydroxyesters from β-Ketoesters by Sequential Catalytic Hydrogenation and Electrophilic Amination. Synlett, 1993, 1993, 475-477.	1.0	32
53	Diastereoselective catalytic hydrogenation on heterogeneous metal catalysts. Topics in Catalysis, 1998, 5, 25-38.	1.3	32
54	Heterogeneously Pd/C catalysed procedure for the vinylation of aryl bromides. Applied Catalysis A: General, 2009, 360, 145-153.	2.2	32

#	Article	IF	CITATIONS
55	Solid-Liquid Separation of Lanthanide/Lanthanide and Lanthanide/Actinide Using Ionic Imprinted Polymer Based on a DTPA Derivative. Chemistry Letters, 2002, 31, 202-203.	0.7	31
56	Cellulose Conversion with Tungstatedâ€Aluminaâ€Based Catalysts: Influence of the Presence of Platinum and Mechanistic Studies. ChemSusChem, 2013, 6, 500-507.	3.6	30
57	Effect of the Nature of Carbon Catalysts on Glyphosate Synthesis. Journal of Catalysis, 1999, 182, 515-519.	3.1	29
58	Conversion of cellulose to 2,5-hexanedione using tungstated zirconia in hydrogen atmosphere. Applied Catalysis A: General, 2015, 504, 664-671.	2.2	29
59	Asymmetric hydrogenation of α-keto ester with diamine-complexed metal. Journal of Molecular Catalysis A, 1996, 112, L157-L161.	4.8	28
60	Influence of the catalytic conditions on the selectivity of the Pd-catalyzed Heck arylation of acrolein derivatives. Tetrahedron Letters, 2006, 47, 3839-3842.	0.7	28
61	Telomerization of Butadiene with Starch under Mild Conditions. ChemSusChem, 2009, 2, 1125-1129.	3.6	28
62	Solvent Effect in Hydrogenolysis of Xylitol over Bifunctional Ru/MnO/C Catalysts under Alkaline-Free Conditions. ACS Sustainable Chemistry and Engineering, 2018, 6, 4076-4085.	3.2	28
63	Synthesis of diethyl 2-(aryl)vinylphosphonates by the Heck reaction catalysed by well-defined palladium complexes. Journal of Organometallic Chemistry, 2009, 694, 3222-3231.	0.8	27
64	In situ monitoring of catalytic three-phase enantioselective hydrogenation using FTIR/ATR spectroscopy. Applied Catalysis A: General, 2004, 264, 1-12.	2.2	25
65	Catalyzed ring opening of epoxides: Application to bioplasticizers synthesis. Applied Catalysis A: General, 2011, 393, 1-8.	2.2	25
66	Influence of Residues Contained in Softwood Hemicellulose Hydrolysates on the Catalytic Oxidation of Glucose to Glucarate in Alkaline Aqueous Solution. Organic Process Research and Development, 2016, 20, 1265-1275.	1.3	25
67	Xylitol Hydrogenolysis over Rutheniumâ€Based Catalysts: Effect of Alkaline Promoters and Basic Oxideâ€Modified Catalysts. ChemCatChem, 2017, 9, 2145-2159.	1.8	25
68	Diastereoselective hydrogenation of 2-methylnicotinic acid derivatives with supported metallic catalysts. Journal of Molecular Catalysis A, 2002, 186, 145-151.	4.8	24
69	Diastereoselective heterogeneous catalytic hydrogenation of 2-methyl nicotinic acid using pyroglutamate chiral auxiliary. Tetrahedron Letters, 2003, 44, 6991-6993.	0.7	23
70	Synthesis of diethyl 2-(aryl)vinylphosphonate by the Heck reaction catalysed by supported palladium catalysts. Applied Catalysis A: General, 2010, 388, 124-133.	2.2	23
71	Effect of carbon chain length on catalytic C O bond cleavage of polyols over Rh-ReOx/ZrO2 in aqueous phase. Applied Catalysis A: General, 2019, 586, 117213.	2.2	23
72	TiO2-supported molybdenum carbide: An active catalyst for the aqueous phase hydrogenation of succinic acid. Applied Catalysis A: General, 2019, 571, 71-81.	2.2	23

#	Article	IF	CITATIONS
73	Palladium-Catalyzed Telomerization of Butadiene with Polyols: From Mono to Polysaccharides. Topics in Current Chemistry, 2010, 295, 93-119.	4.0	21
74	Telomerization of butadiene with starch in water: role of the surfactants. Green Chemistry, 2010, 12, 475.	4.6	21
75	SOLID–LIQUID LANTHANIDE EXTRACTION WITH IONIC-IMPRINTED POLYMERS. Separation Science and Technology, 2002, 37, 2839-2857.	1.3	20
76	Isolated-palladium complexes for catalyzed telomerization of butadiene with methanol in the presence of water. Journal of Organometallic Chemistry, 2009, 694, 2513-2518.	0.8	19
77	Exploring the reaction conditions for Ru/C catalyzed selective hydrogenolysis of xylitol alkaline aqueous solutions to glycols in a trickle-bed reactor. Catalysis Today, 2014, 234, 100-106.	2.2	19
78	Base free oxidation of 1,6-hexanediol to adipic acid over supported noble metal mono- and bimetallic catalysts. Applied Catalysis A: General, 2018, 551, 88-97.	2.2	19
79	Supported ruthenium nanoparticles on ordered mesoporous carbons using a cyclodextrin-assisted hard-template approach and their applications as hydrogenation catalysts. Journal of Catalysis, 2020, 383, 343-356.	3.1	19
80	Influence of the nature of chiral auxiliaries on the diastereoselective hydrogenation of ortho-substituted benzoic acid derivatives. Tetrahedron: Asymmetry, 2000, 11, 1809-1818.	1.8	16
81	Solvent-free ring opening reaction of epoxides using quaternary ammonium salts as catalyst. Catalysis Communications, 2009, 10, 557-560.	1.6	16
82	Some chemical transformations of carbohydrates in aqueous medium. Comptes Rendus Chimie, 2011, 14, 688-699.	0.2	16
83	Supported Cobalt Catalysts for Acceptorless Alcohol Dehydrogenation. ChemPlusChem, 2020, 85, 1315-1324.	1.3	16
84	Activity of heterogeneous supported Cu and Ru catalysts in acceptor-less alcohol dehydrogenation. Catalysis Communications, 2021, 148, 106179.	1.6	16
85	Non-Catalyzed and Pt/γ-Al2O3 Catalyzed Hydrothermal Cellulose Dissolution-Conversion: Influence of the Reaction Parameters. Topics in Catalysis, 2010, 53, 1254-1257.	1.3	15
86	In situ preparation of bimetallic ReOx-Pd/TiO2 catalysts for selective aqueous-phase hydrogenation of succinic acid to 1,4-butanediol. Catalysis Today, 2020, 355, 75-83.	2.2	15
87	Supported Molybdenum Carbide and Nitride Catalysts for Carbon Dioxide Hydrogenation. Frontiers in Chemistry, 2020, 8, 452.	1.8	15
88	Direct synthesis of tricyclic 5H-pyrido[3,2,1-ij]quinolin-3-one by domino palladium catalyzed reaction. Organic and Biomolecular Chemistry, 2006, 4, 3760-3762.	1.5	14
89	Optimized methods for obtaining cellulose and cellulose sulfates from birch wood. Wood Science and Technology, 2015, 49, 825-843.	1.4	14
90	Heck arylation of acrolein acetals using the 9-bromoanthracene: A case of study. Journal of Organometallic Chemistry, 2008, 693, 2863-2868.	0.8	13

#	Article	IF	CITATIONS
91	Aerobic oxidation of secondary pyridine-derivative alcohols in the presence of carbon-supported noble metal catalysts. Catalysis Today, 2013, 203, 133-138.	2.2	13
92	Immobilization of Pybox Ligand on Modified Starch. Chemistry Letters, 2006, 35, 44-45.	0.7	11
93	New chiral oxazoline based-rhodium(I) catalysts: Synthesis, characterisation, heterogeneisation and applications. Journal of Organometallic Chemistry, 2006, 691, 741-747.	0.8	11
94	Characterization by X-ray absorption spectroscopy of bimetallic Re–Pd/TiO2 catalysts efficient for selective aqueous-phase hydrogenation of succinic acid to 1,4-butanediol. Materials Chemistry and Physics, 2020, 252, 123225.	2.0	11
95	Decarboxylative Heterocoupling Coupling of Substituted Benzoic Acids for Biaryl Synthesis. Topics in Catalysis, 2014, 57, 1430-1437.	1.3	10
96	Base directed palladium catalysed Heck arylation of acrolein diethyl acetal in water. Applied Catalysis A: General, 2014, 469, 250-258.	2.2	10
97	Ru-(Mn-M)OX Solid Base Catalysts for the Upgrading of Xylitol to Glycols in Water. Catalysts, 2018, 8, 331.	1.6	10
98	Oxidation of Aldoses Contained in Softwood Hemicellulose Acid Hydrolysates into Aldaric Acids under Alkaline or Noncontrolled pH Conditions. Industrial & Engineering Chemistry Research, 2018, 57, 4543-4552.	1.8	9
99	Synthesis of 3-Arylpropenal and 3-Arylpropionic Acids by Palladium Catalysed Heck Coupling Reactions: Scopes and Limitations. Current Organic Synthesis, 2009, 6, 54-65.	0.7	8
100	Stilbene synthesis through decarboxylative cross-coupling of substituted cinnamic acids with aryl halides. Applied Catalysis A: General, 2018, 560, 132-143.	2.2	8
101	Aerobic oxidation of C ₄ –C ₆ α,ï‰-diols to the diacids in base-free medium over zirconia-supported (bi)metallic catalysts. New Journal of Chemistry, 2019, 43, 9873-9885.	1.4	8
102	Influence of Reduction–Carburization Parameters on the Performance of Supported Molybdenum Carbide Catalysts in Succinic Acid Hydrogenation. Industrial & Engineering Chemistry Research, 2020, 59, 12964-12976.	1.8	8
103	Hydrogenation of double bonds in olefin-modified starch. Catalysis Communications, 2003, 4, 465-468.	1.6	7
104	Direct palladium/copper oxidative cross-coupling of α-methylstyrene with acrylates. Science China Chemistry, 2010, 53, 1927-1931.	4.2	7
105	Valorization of Lactic Acid and Derivatives to Acrylic Acid Derivatives: Review of Mechanistic Studies. Green Chemistry and Sustainable Technology, 2016, , 39-62.	0.4	7
106	Efficient Telomerization of Butadiene with Starch in Water: The Role of the Surfactant. Topics in Catalysis, 2010, 53, 1282-1284.	1.3	6
107	Influence of Liquid or Solid Phase Preparation of Cationic Hemicelluloses on Physical Properties of Paper. BioResources, 2013, 8, .	0.5	6
108	C-O Bond Hydrogenolysis of Aqueous Mixtures of Sugar Polyols and Sugars over ReOx-Rh/ZrO2 Catalyst: Application to an Hemicelluloses Extracted Liquor. Catalysts, 2019, 9, 740.	1.6	6

#	Article	IF	CITATIONS
109	Separation of Lanthanides by Ion Chromatography with Imprinted Polymers. Chemistry Letters, 2003, 32, 530-531.	0.7	5
110	Heterogeneous diastereoselective hydrogenation of pyridine and corresponding enamine covalently bound to pantolactone. Journal of Molecular Catalysis A, 2004, 210, 205-209.	4.8	5
111	Asymmetric reduction of ketones with ruthenium-oxazoline based catalysts. Journal of Molecular Catalysis A, 2008, 287, 142-150.	4.8	5
112	Diffusion of modified vegetables oils in thermoplastic polymers. Materials Chemistry and Physics, 2017, 200, 107-120.	2.0	5
113	Catalytic Transformations of Carbohydrates. ACS Symposium Series, 2006, , 52-66.	0.5	4
114	Catalytic three-phase diastereoselective hydrogenation of o-toluic and 2-methyl nicotinic acid derivatives: In situ FTIR/ATR investigation. Vibrational Spectroscopy, 2007, 45, 18-26.	1.2	4
115	Improving conversion of d-Glucose into short-chain alkanes over Ru/MCM-48 based catalysts. Microporous and Mesoporous Materials, 2019, 286, 25-35.	2.2	4
116	First study on telomerization of chitosan and guar hemicellulose with butadiene: Influence of reaction parameters on the substitution degree of the biopolymers. Molecular Catalysis, 2020, 483, 110706.	1.0	4
117	Aqueous Heck Arylation of Acrolein Derivatives: The Role of Cyclodextrin as Additive. Topics in Catalysis, 2014, 57, 1550-1557.	1.3	3
118	Catalytic Transfer Dehydrogenation of Geraniol to Geranial Over Palladium and Copper Supported Catalysts. Topics in Catalysis, 2014, 57, 1498-1504.	1.3	3
119	Synthesis of terpene derivatives of ethanolamine using telomerization reaction. Tetrahedron Letters, 2016, 57, 452-457.	0.7	2
120	The Pivotal Role of Catalysis in France: Selected Examples of Recent Advances and Future Prospects ChemCatChem, 2017, 9, 2029-2064.	1.8	2
121	Diastereoselective Heterogeneous Catalytic Hydrogenation of 2-Methyl Nicotinic Acid Using Pyroglutamate Chiral Auxiliary ChemInform, 2003, 34, no.	0.1	0
122	New Chiral Bis(oxazoline) Rh(I)-, Ir(I)- and Ru(II)-Complexes for Asymmetric Transfer Hydrogenations of Ketones ChemInform, 2004, 35, no.	0.1	0
123	Diastereoselective hydrogenation of a cyclic β-ketoformyl derivative on supported metal catalysts. Journal of Molecular Catalysis A, 2005, 227, 125-131.	4.8	0