Hiroaki Kubota

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5429849/publications.pdf

Version: 2024-02-01

933447 940533 39 290 10 16 citations g-index h-index papers 40 40 40 446 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	<i>Rhodococcus equi</i> U19 strain harbors a nonmobilizable virulence plasmid. Microbiology and Immunology, 2022, , .	1.4	2
2	Molecular Characterization of <i>bla</i> _{NDM} -Carrying IncX3 Plasmids: <i>bla</i> _{NDM-16b} Likely Emerged from a Mutation of <i>bla</i> _{NDM-5} on IncX3 Plasmid. Microbiology Spectrum, 2022, 10, .	3.0	5
3	Complete Genome Sequence of Staphylococcus aureus Strain 834, Isolated from a Septic Patient in Japan. Microbiology Resource Announcements, 2021, 10, .	0.6	2
4	Complete Genome Sequences of Staphylococcus argenteus Tokyo13064 and Tokyo13069, Isolated from Specimens Obtained during a Food Poisoning Outbreak in Tokyo, Japan. Microbiology Resource Announcements, 2021, 10, .	0.6	1
5	Pathogenicity and genomic features of vapN-harboring Rhodococcus equi isolated from human patients. International Journal of Medical Microbiology, 2021, 311, 151519.	3.6	15
6	Microscopic Temperature Control Reveals Cooperative Regulation of Actin–Myosin Interaction by Drebrin E. Nano Letters, 2021, 21, 9526-9533.	9.1	3
7	Complete Genome Sequence of Ceftriaxone-Resistant Neisseria gonorrhoeae SS3160, Isolated in Tokyo, Japan. Microbiology Resource Announcements, 2020, 9, .	0.6	1
8	A novel staphylococcal enterotoxin SE02 involved in a staphylococcal food poisoning outbreak that occurred in Tokyo in 2004. Food Microbiology, 2020, 92, 103588.	4.2	24
9	Recovery of FRI-5 carbapenemase at a Japanese hospital where FRI-4 carbapenemase was discovered. Journal of Antimicrobial Chemotherapy, 2019, 74, 3390-3392.	3.0	7
10	Multiple \hat{I}^2 -Lactam Resistance Gene-Carrying Plasmid Harbored by Klebsiella quasipneumoniae Isolated from Urban Sewage in Japan. MSphere, 2019, 4, .	2.9	22
11	IMP-68, a Novel IMP-Type Metallo- \hat{I}^2 -Lactamase in Imipenem-Susceptible Klebsiella pneumoniae. MSphere, 2019, 4, .	2.9	17
12	Processive Nanostepping of Formin mDia1 Loosely Coupled with Actin Polymerization. Nano Letters, 2018, 18, 6617-6624.	9.1	6
13	FRI-4 carbapenemase-producing Enterobacter cloacae complex isolated in Tokyo, Japan. Journal of Antimicrobial Chemotherapy, 2018, 73, 2969-2972.	3.0	12
14	Association of Anoxybacillus sp. with acid off-flavor development in a spoiled, boiled, rice dish. International Journal of Food Microbiology, 2018, 286, 111-119.	4.7	4
15	Food poisoning outbreak in Tokyo, Japan caused by Staphylococcus argenteus. International Journal of Food Microbiology, 2017, 262, 31-37.	4.7	38
16	Biphasic Effect of Profilin Impacts the Formin mDia1 Force-Sensing Mechanism in Actin Polymerization. Biophysical Journal, 2017, 113, 461-471.	0.5	37
17	Identification and functional activity of a staphylocoagulase type XI variant originating from staphylococcal food poisoning isolates. Letters in Applied Microbiology, 2016, 63, 172-177.	2.2	2
18	Molecular Typing of Mycoplasma pneumoniae Isolated from Pediatric Patients in Tokyo, Japan. Japanese Journal of Infectious Diseases, 2015, 68, 76-78.	1.2	8

#	Article	IF	CITATIONS
19	Increased prevalence of group A streptococcus isolates in streptococcal toxic shock syndrome cases in Japan from 2010 to 2012. Epidemiology and Infection, 2015, 143, 864-872.	2.1	50
20	Identification and characterization of novel <i>Staphylococcus aureus</i> pathogenicity islands encoding staphylococcal enterotoxins originating from staphylococcal food poisoning isolates. Journal of Applied Microbiology, 2015, 118, 1507-1520.	3.1	10
21	1P203 Inhibition of actomyosin contractility by α-catenin, a component of adherens junction(12.Cell) Tj ETQq1 IS139.	0.784314 0.1	4 rgBT /Ov <mark>er</mark> l 0
22	3P150 Effect of UV irradiation on myosin V motility(11. Molecular motor,Poster). Seibutsu Butsuri, 2013, 53, S236.	0.1	0
23	3P175 Effect of tropomyosin and troponin on the single-molecule motility of myosin V(Molecular) Tj ETQq $1\ 1\ 0.7$	'84314 rgl	BT _d /Overlock
24	3P177 Analysis of the motility characteristics of myosin VI constructs with mutations in the base region of the converter domain(Molecular motor,The 48th Annual Meeting of the Biophysical Society) Tj ETQq0 C) Oor.grBT /O)verlock 10 Tt
25	Modulation of the mechano-chemical properties of myosin V by drebrin-E. Biochemical and Biophysical Research Communications, 2010, 400, 643-648.	2.1	11
26	D-loop of Actin Differently Regulates the Motor Function of Myosins II and V. Journal of Biological Chemistry, 2009, 284, 35251-35258.	3.4	11
27	2P-121 Role of tropomyosin in the motility of myosin V along an actin filament(Molecular motor,The) Tj ETQq1 1	0.784314	rgBT /Ove <mark>rlo</mark>
28	1TA1-04 A study on cytoplasmic actin SS dimers.(The 47th Annual Meeting of the Biophysical Society of) Tj ETQc	0 0 0 rgBT	7
29	1TA4-07 Single-molecule myosin V movement on a tense actin filament(The 47th Annual Meeting of the) Tj ETQq	1 1.0.784	314 rgBT /Ov
30	1P-139 Single-molecule myosin V movement on a tense actin filament(Molecular motor, The 47th Annual) Tj ETQ	q0 <u>0</u> 0 rgB	T Overlock 1
31	1P-030 A study on cytoplasmic actin SS dimers(Protein:Structure & 27th Annual) Tj ETQq1 1 ().784314 ı O.1	rgBT Overloc
32	2P-195 Hydrophobic residues in the converter domain of myosin V play an important role in the intramolecular force transmission(The 46th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2008, 48, S105.	0.1	0
33	1P-171 The role of D-loop in actomyosin interaction(The 46th Annual Meeting of the Biophysical Society) Tj ETQo	11,0.784	314 rgBT / <mark>O</mark> \
34	2P224 High-yield expression of Dictyostelium actin in the baculovirus/Sf9 cell system and its characterization(Cell biological problems-adhesion, motility, cytoskeleton, signaling, and) Tj ETQq0 0 0 rgBT /Ove	rlooch: 10 T	f 5 0 137 Td (
35	3P030 A study on actin SS dimer by site-directed mutagenesis of Dictyostelium actin(Proteins-structure and structure-function relationship,Poster Presentations). Seibutsu Butsuri, 2007, 47, S210.	0.1	0
36	2P118 Effects of modification of D-loop of actin on the interaction with myosin(Molecular) Tj ETQq0 0 0 rgBT /Ov	verlock 10	Tf ₀ 50 62 Td (

#	Article	IF	CITATIONS
37	1P237 Functional analysis of M47A/E360H mutant actin expressed in Dictyostelium cells(8. Muscle) Tj ETQq1 1 G Seibutsu Butsuri, 2006, 46, S206.	0.784314 0.1	rgBT /Overlo 0
38	Steam Reforming of Hydrocarbons on Alkali Polyaluminate Catalysts (Part. 2). Bulletin of the Japan Petroleum Institute, 1977, 19, 46-49.	0.1	2
39	An Autobioluminescent Method for Evaluating <i>ln Vitro</i> and <i>ln Vivo</i> Growth of Rhodococcus equi. Microbiology Spectrum, 0, , .	3.0	0