Clara Piccirillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5429788/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Monodisperse and Nanometric-Sized Calcium Carbonate Particles Synthesis Optimization. Nanomaterials, 2022, 12, 1494.	1.9	6
2	Poly(l-lactide-co-caprolactone-co-glycolide)-Based Nanoparticles as Delivery Platform: Effect of the Surfactants on Characteristics and Delivery Efficiency. Nanomaterials, 2022, 12, 1550.	1.9	4
3	Calcium Phosphate Particles Coated with Humic Substances: A Potential Plant Biostimulant from Circular Economy. Molecules, 2021, 26, 2810.	1.7	12
4	Sustainable chitosan-based electrical responsive scaffolds for tissue engineering applications. Sustainable Materials and Technologies, 2021, 28, e00260.	1.7	5
5	UiO-67-derived bithiophene and bithiazole MIXMOFs for luminescence sensing and removal of contaminants of emerging concern in wastewater. Inorganic Chemistry Frontiers, 2021, 9, 90-102.	3.0	3
6	Biomimetic calcium carbonate with hierarchical porosity produced using cork as a sustainable template agent. Journal of Environmental Chemical Engineering, 2020, 8, 103594.	3.3	10
7	Lipid-Based Nanovesicles for Simultaneous Intracellular Delivery of Hydrophobic, Hydrophilic, and Amphiphilic Species. Frontiers in Bioengineering and Biotechnology, 2020, 8, 690.	2.0	13
8	Nanostructured titanium dioxide coatings prepared by Aerosol Assisted Chemical Vapour Deposition (AACVD). Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400, 112727.	2.0	20
9	Mussel Shell-Derived Macroporous 3D Scaffold: Characterization and Optimization Study of a Bioceramic from the Circular Economy. Marine Drugs, 2020, 18, 309.	2.2	26
10	Films of chitosan and natural modified hydroxyapatite as effective UV-protecting, biocompatible and antibacterial wound dressings. International Journal of Biological Macromolecules, 2020, 159, 1177-1185.	3.6	32
11	Employment of phosphate solubilising bacteria on fish scales – Turning food waste into an available phosphorus source. Journal of Environmental Chemical Engineering, 2019, 7, 103403.	3.3	12
12	Safety of Yam-Derived (Dioscorea rotundata) Foodstuffs—Chips, Flakes and Flour: Effect of Processing and Post-Processing Conditions. Foods, 2019, 8, 12.	1.9	17
13	ZnS-containing industrial waste: Antibacterial activity and effects of thermal treatment temperature and atmosphere on photocatalytic activity. Journal of Alloys and Compounds, 2019, 791, 971-982.	2.8	15
14	A sustainable multi-function biomorphic material for pollution remediation or UV absorption: Aerosol assisted preparation of highly porous ZnO-based materials from cork templates. Journal of Environmental Chemical Engineering, 2019, 7, 102936.	3.3	19
15	Increased UV absorption properties of natural hydroxyapatiteâ€based sunscreen through laser ablation modification in liquid. Journal of the American Ceramic Society, 2019, 102, 3163-3174.	1.9	9
16	Nanoheterostructures (NHS) and Their Applications in Nanomedicine: Focusing on In Vivo Studies. Materials, 2019, 12, 139.	1.3	19
17	Biodegradation of Diclofenac by the bacterial strain Labrys portucalensis F11. Ecotoxicology and Environmental Safety, 2018, 152, 104-113.	2.9	94
18	Study of the proximate and mineral composition of different Nigerian yam chips, flakes and flours. Journal of Food Science and Technology, 2018, 55, 42-51.	1.4	18

#	Article	IF	CITATIONS
19	Photocatalytic Degradation of Diclofenac by Hydroxyapatite–TiO2 Composite Material: Identification of Transformation Products and Assessment of Toxicity. Materials, 2018, 11, 1779.	1.3	41
20	A sustainable replacement for TiO2 in photocatalyst construction materials: Hydroxyapatite-based photocatalytic additives, made from the valorisation of food wastes of marine origin. Journal of Cleaner Production, 2018, 193, 115-127.	4.6	22
21	Calcium hydroxyapatite-based photocatalysts for environment remediation: Characteristics, performances and future perspectives. Journal of Environmental Management, 2017, 193, 79-91.	3.8	78
22	Surface modified hydroxyapatites with various functionalized nanostructures: Computational studies of the vacancies in HAp. Ferroelectrics, 2017, 509, 105-112.	0.3	3
23	Luminescent calcium phosphate bioceramics doped with europium derived from fish industry byproducts. Journal of the American Ceramic Society, 2017, 100, 3402-3414.	1.9	19
24	Screening and molecular identification of lactic acid bacteria from gari and fufu and gari effluents. Annals of Microbiology, 2017, 67, 123-133.	1.1	13
25	Biphasic apatite-carbon materials derived from pyrolysed fish bones for effective adsorption of persistent pollutants and heavy metals. Journal of Environmental Chemical Engineering, 2017, 5, 4884-4894.	3.3	47
26	Aerosol assisted chemical vapour deposition of hydroxyapatite-embedded titanium dioxide composite thin films. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332, 45-53.	2.0	36
27	Effect of preparation and processing conditions on UV absorbing properties of hydroxyapatite-Fe2O3 sunscreen. Materials Science and Engineering C, 2017, 71, 141-149.	3.8	30
28	Oxygen vacancies, the optical band gap (Eg) and photocatalysis of hydroxyapatite: Comparing modelling with measured data. Applied Catalysis B: Environmental, 2016, 196, 100-107.	10.8	146
29	Photodegradation of pharmaceutical persistent pollutants using hydroxyapatite-based materials. Journal of Environmental Management, 2016, 182, 486-495.	3.8	55
30	Effects of Cu, Zn and Cu-Zn addition on the microstructure and antibacterial and photocatalytic functional properties of Cu-Zn modified TiO 2 nano-heterostructures. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 330, 44-54.	2.0	27
31	Cassava (<i>Manihot esculenta</i> Crantz) and Yam (<i>Dioscorea</i> spp.) Crops and Their Derived Foodstuffs: Safety, Security and Nutritional Value. Critical Reviews in Food Science and Nutrition, 2016, 56, 2714-2727.	5.4	58
32	Titanium Dioxide Thin Films Deposited by Electric Fieldâ€Assisted CVD: Effect on Antimicrobial and Photocatalytic Properties ^{**} . Chemical Vapor Deposition, 2015, 21, 63-70.	1.4	19
33	Hydroxyapatite-based materials of marine origin: A bioactivity and sintering study. Materials Science and Engineering C, 2015, 51, 309-315.	3.8	53
34	Silver-containing calcium phosphate materials of marine origin with antibacterial activity. Ceramics International, 2015, 41, 10152-10159.	2.3	24
35	Light induced antibacterial activity and photocatalytic properties of Ag/Ag3PO4 -based material of marine origin. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 296, 40-47.	2.0	50
36	Characterization and antimicrobial properties of food packaging methylcellulose films containing stem extract of Ginja cherry. Journal of the Science of Food and Agriculture, 2014, 94, 2097-2103.	1.7	21

#	Article	IF	CITATIONS
37	Hydroxyapatite and chloroapatite derived from sardine by-products. Ceramics International, 2014, 40, 13231-13240.	2.3	36
38	Silver-Modified Nano-titania as an Antibacterial Agent and Photocatalyst. Journal of Physical Chemistry C, 2014, 118, 4751-4766.	1.5	81
39	A hydroxyapatite–Fe ₂ O ₃ based material of natural origin as an active sunscreen filter. Journal of Materials Chemistry B, 2014, 2, 5999-6009.	2.9	50
40	Chemical composition and antibacterial properties of stem and leaf extracts from Ginja cherry plant. Industrial Crops and Products, 2013, 43, 562-569.	2.5	28
41	Extraction of high added value biological compounds from sardine, sardine-type fish and mackerel canning residues — A review. Materials Science and Engineering C, 2013, 33, 3111-3120.	3.8	99
42	Calcium phosphate-based materials of natural origin showing photocatalytic activity. Journal of Materials Chemistry A, 2013, 1, 6452.	5.2	57
43	Bacteria immobilisation on hydroxyapatite surface for heavy metals removal. Journal of Environmental Management, 2013, 121, 87-95.	3.8	77
44	Extraction and characterisation of apatite- and tricalcium phosphate-based materials from cod fish bones. Materials Science and Engineering C, 2013, 33, 103-110.	3.8	129
45	Bioconversion of oleuropein to hydroxytyrosol by lactic acid bacteria. World Journal of Microbiology and Biotechnology, 2012, 28, 2435-2440.	1.7	48
46	Antimicrobial Properties of Light-activated Polyurethane Containing Indocyanine Green. Journal of Biomaterials Applications, 2011, 25, 387-400.	1.2	25
47	Extraction of Valuable Compounds from Ginja Cherry By-Products: Effect of the Solvent and Antioxidant Properties. Waste and Biomass Valorization, 2011, 2, 365-371.	1.8	9
48	High Added-Value Compounds with Antibacterial Properties from Ginja Cherries By-products. Waste and Biomass Valorization, 2010, 1, 209-217.	1.8	11
49	Frictional properties of light-activated antimicrobial polymers in blood vessels. Journal of Materials Science: Materials in Medicine, 2010, 21, 815-821.	1.7	17
50	Antibacterial Activity of Light-Activated Silicone Containing Methylene Blue and Gold Nanoparticles of Different Sizes. Journal of Cluster Science, 2010, 21, 427-438.	1.7	62
51	Nano-composite thermochromic thin films and their application in energy-efficient glazing. Solar Energy Materials and Solar Cells, 2010, 94, 141-151.	3.0	99
52	Energy modelling studies of thermochromic glazing. Energy and Buildings, 2010, 42, 1666-1673.	3.1	175
53	Hybrid Aerosol Assisted Atmospheric Pressure Chemical Vapour Deposition: A Facile Route Toward Nano-Composite Thin Films?. ECS Transactions, 2009, 25, 773-780.	0.3	3
54	Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use in architectural glazing. Thin Solid Films, 2009, 517, 4565-4570.	0.8	111

#	Article	IF	CITATIONS
55	The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomaterials, 2009, 30, 89-93.	5.7	231
56	Templated growth of smart nanocomposite thin films: Hybrid aerosol assisted and atmospheric pressure chemical vapour deposition of vanadyl acetylacetonate, auric acid and tetraoctyl ammonium bromide. Polyhedron, 2009, 28, 2233-2239.	1.0	24
57	Templated growth of smart coatings: Hybrid chemical vapour deposition of vanadyl acetylacetonate with tetraoctyl ammonium bromide. Applied Surface Science, 2009, 255, 7291-7295.	3.1	27
58	Antimicrobial activity of methylene blue and toluidine blue O covalently bound to a modified silicone polymer surface. Journal of Materials Chemistry, 2009, 19, 6167.	6.7	83
59	Toluidine blue-containing polymers exhibit potent bactericidal activity when irradiated with red laser light. Journal of Materials Chemistry, 2009, 19, 2715.	6.7	59
60	Synthesis and characterisation of W-doped VO2 by Aerosol Assisted Chemical Vapour Deposition. Thin Solid Films, 2008, 516, 1992-1997.	0.8	91
61	Hybrid Aerosol Assisted and Atmospheric Pressure CVD of Goldâ€Doped Vanadium Dioxide. Chemical Vapor Deposition, 2008, 14, 33-39.	1.4	58
62	Doped and un-doped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl acetylacetonate and tungsten hexachloride: the effects of thickness and crystallographic orientation on thermochromic properties. Journal of Materials Chemistry, 2007, 17, 4652.	6.7	134
63	Synthesis and Functional Properties of Vanadium Oxides: V2O3, VO2, and V2O5 Deposited on Glass by Aerosol-Assisted CVD. Chemical Vapor Deposition, 2007, 13, 145-151.	1.4	136
64	Nb-Doped VO2 Thin Films Prepared by Aerosol-Assisted Chemical Vapour Deposition. European Journal of Inorganic Chemistry, 2007, 2007, 4050-4055.	1.0	77
65	Tungsten doped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl acetylacetonate and tungsten hexachloride. Surface and Coatings Technology, 2007, 201, 9369-9372.	2.2	43
66	A quantitative study of the boron acceptor in diamond by Fourier-transform photocurrent spectroscopy. Diamond and Related Materials, 2004, 13, 1785-1790.	1.8	13
67	Cathodoluminescence study of H-implanted B-doped diamond samples. Diamond and Related Materials, 2004, 13, 944-947.	1.8	2
68	Temperature dependence of intrinsic infrared absorption in natural and chemical-vapor deposited diamond. Journal of Applied Physics, 2002, 92, 756-763.	1.1	13
69	Investigation on boron-doped CVD samples. Diamond and Related Materials, 2002, 11, 338-341.	1.8	11
70	Why Does Diamond Absorb Infra-Red Radiation?. Physica Status Solidi A, 2002, 193, 442-447.	1.7	6
71	The Temperature Dependence of the Infrared Absorption and Raman Spectra Due to Boron in Diamond. Physica Status Solidi A, 2002, 193, 529-534.	1.7	7
72	The variation of optical absorption of CVD diamond as a function of temperature. Physica B: Condensed Matter, 2001, 308-310, 581-584.	1.3	3

#	Article	IF	CITATIONS
73	Secondary ion mass spectrometric investigation of Au-based composites. Rapid Communications in Mass Spectrometry, 2001, 15, 2014-2019.	0.7	1
74	Secondary ion mass spectrometry in the characterisation of boron-based ceramics. Rapid Communications in Mass Spectrometry, 2001, 15, 1-7.	0.7	17
75	Composition and Microstructure of Cobalt Oxide Thin Films Obtained from a Novel Cobalt(II) Precursor by Chemical Vapor Deposition. Chemistry of Materials, 2001, 13, 588-593.	3.2	570
76	Secondary ion mass spectrometric investigation on ruthenium oxide systems: a comparison between poly- and nanocrystalline deposits. Rapid Communications in Mass Spectrometry, 2000, 14, 1179-1183.	0.7	7
77	Surface chemistry of RuO2/IrO2/TiO2 mixed-oxide electrodes: secondary ion mass spectrometric study of the changes induced by electrochemical treatment. Rapid Communications in Mass Spectrometry, 2000, 14, 2165-2169.	0.7	19
78	Characterization of Dispersion-Hardened Electrodeposited Gold Composites. Part 1:Â SIMS and SEM Study of Powder Inclusions. Chemistry of Materials, 2000, 12, 2964-2970.	3.2	3
79	Electroformed objects for jewelry: secondary ion mass spectrometry characterization of Au films from CN-free electrolytes. , 1998, 12, 857-863.		2
80	Secondary ion mass spectrometry characterization of IrO2-Ta2O5 thin films: effect of relative composition on electrode properties. , 1998, 12, 1574-1579.		10
81	Sims Characterization of Noble Metal-Based Thin Film Electrodes. Materials Science Forum, 1997, 235-238, 625-630.	0.3	0
82	Role of secondary ion mass spectrometric analysis in the brazing of precious alloys. , 1997, 11, 1309-1314.		0
83	Investigation on the formation of RuO2 film electrode by secondary ion mass spectrometry. Surface Science, 1996, 348, 287-298.	0.8	6
84	Investigation of the formation of RuO2-based mixed oxide coatings by secondary ion mass spectrometry. Journal of Materials Chemistry, 1996, 6, 567-571.	6.7	10
85	Glass Sample Characterization by Secondary Ion Mass Spectrometry. , 1996, 10, 1286-1290.		3
86	Study of ZrO2 Film Evolution by Secondary Ion Mass Spectrometry. , 1996, 10, 1769-1773.		2
87	Secondary Ion Mass Spectrometric Studies on the Formation Mechanism of IrO2/ZrO2 Based Electrocatalytic Thin Films. , 1996, 10, 1881-1886.		5
88	Secondary ion mass spectrometric studies on the formation mechanism of IrO2/TiO2-based coatings. Rapid Communications in Mass Spectrometry, 1995, 9, 1475-1479.	0.7	6
89	Thermochromic Coatings for Intelligent Architectural Glazing. Journal of Nano Research, 0, 2, 1-20.	0.8	46
90	Determination of the Optical Constants of VO ₂ and Nb-Doped VO ₂ Thin Films. Materials Science Forum, 0, 587-588, 640-644.	0.3	8

#	Article	IF	CITATIONS
91	Optimisation of Thermochromic Thin Films on Glass; Design of Intelligent Windows. Advances in Science and Technology, 0, , .	0.2	1
92	Cork-derived hierarchically porous hydroxyapatite with different stoichiometries for biomedical and environmental applications. Materials Chemistry Frontiers, 0, , .	3.2	9