
Maxwell T Hincke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/542958/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proteomics of Shell Matrix Proteins from the Cuttlefish Bone Reveals Unique Evolution for Cephalopod Biomineralization. ACS Biomaterials Science and Engineering, 2023, 9, 1796-1807.	5.2	13
2	Mechanisms and hormonal regulation of shell formation. , 2022, , 813-859.		1
3	Eggshell decalcification and skeletal mineralization during chicken embryonic development: defining candidate genes in the chorioallantoic membrane. Poultry Science, 2022, 101, 101622.	3.4	15
4	High value applications and current commercial market for eggshell membranes and derived bioactives. Food Chemistry, 2022, 382, 132270.	8.2	9
5	Properties, Genetics and Innate Immune Function of the Cuticle in Egg-Laying Species. Frontiers in Immunology, 2022, 13, 838525.	4.8	15
6	Concomitant Morphological Modifications of the Avian Eggshell, Eggshell Membranes and the Chorioallantoic Membrane During Embryonic Development. Frontiers in Physiology, 2022, 13, 838013.	2.8	6
7	Proteomic Analysis of Chicken Chorioallantoic Membrane (CAM) during Embryonic Development Provides Functional Insight. BioMed Research International, 2022, 2022, 1-17.	1.9	3
8	Evolution of the Avian Eggshell Biomineralization Protein Toolkit – New Insights From Multi-Omics. Frontiers in Genetics, 2021, 12, 672433.	2.3	15
9	A Survey of Recent Patents in Engineering Technology for the Screening, Separation and Processing of Eggshell. Frontiers in Bioengineering and Biotechnology, 2021, 9, 677559.	4.1	8
10	Immunomodulation and Intestinal Morpho-Functional Aspects of a Novel Gram-Negative Bacterium Rouxiella badensis subsp. acadiensis. Frontiers in Microbiology, 2021, 12, 569119.	3.5	9
11	Biotechnological Applications of Eggshell: Recent Advances. Frontiers in Bioengineering and Biotechnology, 2021, 9, 675364.	4.1	37
12	Avian Eggshell Membrane as a Novel Biomaterial: A Review. Foods, 2021, 10, 2178.	4.3	24
13	Three chromosome-level duck genome assemblies provide insights into genomic variation during domestication. Nature Communications, 2021, 12, 5932.	12.8	27
14	Impact of Different Layer Housing Systems on Eggshell Cuticle Quality and Salmonella Adherence in Table Eggs. Foods, 2021, 10, 2559.	4.3	7
15	The transcriptome landscapes of ovary and three oviduct segments during chicken (Gallus gallus) egg formation. Genomics, 2020, 112, 243-251.	2.9	42
16	A Review of the Varied Uses of Macroalgae as Dietary Supplements in Selected Poultry with Special Reference to Laying Hen and Broiler Chickens. Journal of Marine Science and Engineering, 2020, 8, 536.	2.6	29
17	A novel eco-friendly green approach to produce particalized eggshell membrane (PEM) for skin health applications. Biomaterials Science, 2020, 8, 5346-5361.	5.4	21
18	Avian eggshell formation reveals a new paradigm for vertebrate mineralization via vesicular amorphous calcium carbonate. Journal of Biological Chemistry, 2020, 295, 15853-15869.	3.4	18

MAXWELL T HINCKE

#	Article	IF	CITATIONS
19	Development and characterization of magnetic eggshell membranes for lead removal from wastewater. Ecotoxicology and Environmental Safety, 2020, 192, 110307.	6.0	14
20	Integrating transcriptome, proteome and QTL data to discover functionally important genes for duck eggshell and albumen formation. Genomics, 2020, 112, 3687-3695.	2.9	11
21	The glycoproteins EDIL3 and MFGE8 regulate vesicle-mediated eggshell calcification in a new model for avian biomineralization. Journal of Biological Chemistry, 2019, 294, 14526-14545.	3.4	25
22	Guinea fowl eggshell quantitative proteomics yield new findings related to its unique structural characteristics and superior mechanical properties. Journal of Proteomics, 2019, 209, 103511.	2.4	16
23	Experimental datasets on processed eggshell membrane powder for wound healing. Data in Brief, 2019, 26, 104457.	1.0	12
24	iTRAQâ€Based Quantitative Proteomic Analysis of Duck Eggshell During Biomineralization. Proteomics, 2019, 19, 1900011.	2.2	14
25	Dynamics of Structural Barriers and Innate Immune Components during Incubation of the Avian Egg: Critical Interplay between Autonomous Embryonic Development and Maternal Anticipation. Journal of Innate Immunity, 2019, 11, 111-124.	3.8	44
26	Processed eggshell membrane powder: Bioinspiration for an innovative wound healing product. Materials Science and Engineering C, 2019, 95, 192-203.	7.3	54
27	Histone H5 is a potent Antimicrobial Agent and a template for novel Antimicrobial Peptides. Scientific Reports, 2018, 8, 2411.	3.3	30
28	Nanostructure, osteopontin, and mechanical properties of calcitic avian eggshell. Science Advances, 2018, 4, eaar3219.	10.3	86
29	Processed eggshell membrane powder regulates cellular functions and increase MMP-activity important in early wound healing processes. PLoS ONE, 2018, 13, e0201975.	2.5	34
30	In-depth comparative analysis of the chicken eggshell membrane proteome. Journal of Proteomics, 2017, 155, 49-62.	2.4	58
31	Histones from Avian Erythrocytes Exhibit Antibiofilm activity against methicillin-sensitive and methicillin-resistant Staphylococcus aureus. Scientific Reports, 2017, 7, 45980.	3.3	13
32	Quantitative proteomics analysis of eggshell membrane proteins during chick embryonic development. Journal of Proteomics, 2016, 130, 11-25.	2.4	63
33	Identifying specific proteins involved in eggshell membrane formation using gene expression analysis and bioinformatics. BMC Genomics, 2015, 16, 792.	2.8	47
34	Novel identification of matrix proteins involved in calcitic biomineralization. Journal of Proteomics, 2015, 116, 81-96.	2.4	65
35	Amorphous calcium carbonate controls avian eggshell mineralization: A new paradigm for understanding rapid eggshell calcification. Journal of Structural Biology, 2015, 190, 291-303.	2.8	122
36	Antimicrobial histones from chicken erythrocytes bind bacterial cell wall lipopolysaccharides and lipoteichoic acids. International Journal of Antimicrobial Agents, 2014, 44, 470-472.	2.5	15

MAXWELL T HINCKE

#	Article	IF	CITATIONS
37	Ovocalyxin-36 is an effector protein modulating the production of proinflammatory mediators. Veterinary Immunology and Immunopathology, 2014, 160, 1-11.	1.2	15
38	Integrating De Novo Transcriptome Assembly and Cloning to Obtain Chicken Ovocleidin-17 Full-Length cDNA. PLoS ONE, 2014, 9, e93452.	2.5	25
39	Mesenchymal stem cell-based tissue engineering strategies for repair of articular cartilage. Histology and Histopathology, 2014, 29, 669-89.	0.7	64
40	Ovocalyxin-36 ls a Pattern Recognition Protein in Chicken Eggshell Membranes. PLoS ONE, 2013, 8, e84112.	2.5	45
41	Learning Anatomy: Can Dissection and Peer-Mediated Teaching Offer Added Benefits over Prosection Alone?. ISRN Anatomy, 2013, 2013, 1-4.	0.5	13
42	Proteomic analysis provides new insight into the chicken eggshell cuticle. Journal of Proteomics, 2012, 75, 2697-2706.	2.4	95
43	The eggshell: structure, composition and mineralization. Frontiers in Bioscience - Landmark, 2012, 17, 1266.	3.0	315
44	Recent Patents on Eggshell: Shell and Membrane Applications. Recent Patents on Food, Nutrition & Agriculture, 2011, 3, 1-8.	0.9	68
45	The Role of Matrix Proteins in Eggshell Formation. Journal of Poultry Science, 2010, 47, 208-219.	1.6	76
46	Colloidal-gold Immunocytochemical Localization of Osteopontin in Avian Eggshell Gland and Eggshell. Journal of Histochemistry and Cytochemistry, 2008, 56, 467-476.	2.5	54
47	Avian eggshell mineralization: biochemical and functional characterization of matrix proteins. Comptes Rendus - Palevol, 2004, 3, 549-562.	0.2	385
48	Ovocalyxin-32, a Novel Chicken Eggshell Matrix Protein. Journal of Biological Chemistry, 2001, 276, 39243-39252.	3.4	132
49	Distribution of calcium/calmodulin-dependent kinase 2 in the brain ofApteronotus leptorhynchus. Journal of Comparative Neurology, 1999, 408, 177-203.	1.6	22
50	K depletion stimulates in vivo HCO3 reabsorption in surviving rat distal tubules. American Journal of Physiology - Renal Physiology, 1998, 274, F665-F672.	2.7	1
51	Inositol 1,4,5-trisphosphate receptor localization in the brain of a weakly electric fish (Apteronotus) Tj ETQq1 1 C 361, 512-524.).784314 ı 1.6	rgBT /Overl <mark>oc</mark> 24
52	Ca2+-Flux Modulation by Calciductin Phosphorylation in Cardiac Sarcolemma. Membrane Biochemistry, 1984, 5, 109-117.	0.6	4