Brian A Mendelsohn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5429551/publications.pdf

Version: 2024-02-01

29 2,446 19 27
papers citations h-index g-index

31 31 31 2347 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nature Biotechnology, 2003, 21, 778-784.	17.5	1,018
2	Enhanced Activity of Monomethylauristatin F through Monoclonal Antibody Delivery:Â Effects of Linker Technology on Efficacy and Toxicity. Bioconjugate Chemistry, 2006, 17, 114-124.	3.6	448
3	Oxidation of Oximes to Nitrile Oxides with Hypervalent Iodine Reagents. Organic Letters, 2009, 11, 1539-1542.	4.6	195
4	AJICAP: Affinity Peptide Mediated Regiodivergent Functionalization of Native Antibodies. Angewandte Chemie - International Edition, 2019, 58, 5592-5597.	13.8	73
5	Modulation of Macropinocytosis-Mediated Internalization Decreases Ocular Toxicity of Antibody–Drug Conjugates. Cancer Research, 2018, 78, 2115-2126.	0.9	72
6	Oxidation of α-Oxo-Oximes to Nitrile Oxides with Hypervalent Iodine Reagents. Journal of Organic Chemistry, 2011, 76, 728-731.	3.2	68
7	Approach to Tetrodotoxin via the Oxidative Amidation of a Phenol. Organic Letters, 2009, 11, 4736-4739.	4.6	54
8	A Potential Mechanism for ADC-Induced Neutropenia: Role of Neutrophils in Their Own Demise. Molecular Cancer Therapeutics, 2017, 16, 1866-1876.	4.1	49
9	An overview of process development for antibody-drug conjugates produced by chemical conjugation technology. Expert Opinion on Biological Therapy, 2021, 21, 963-975.	3.1	42
10	Antibody–Drug Conjugate Payloads; Study of Auristatin Derivatives. Chemical and Pharmaceutical Bulletin, 2020, 68, 201-211.	1.3	37
11	Investigation of Hydrophilic Auristatin Derivatives for Use in Antibody Drug Conjugates. Bioconjugate Chemistry, 2017, 28, 371-381.	3.6	33
12	Recent Advances in Drug–Antibody Ratio Determination of Antibody–Drug Conjugates. Chemical and Pharmaceutical Bulletin, 2021, 69, 976-983.	1.3	33
13	Metabolism of an Oxime-Linked Antibody Drug Conjugate, AGS62P1, and Characterization of Its Identified Metabolite. Molecular Pharmaceutics, 2018, 15, 2384-2390.	4.6	27
14	Comparison of Analytical Methods for Antibody–Drug Conjugates Produced by Chemical Site-Specific Conjugation: First-Generation AJICAP. Analytical Chemistry, 2019, 91, 12724-12732.	6.5	27
15	Good Manufacturing Practice Strategy for Antibody–Drug Conjugate Synthesis Using Site-Specific Chemical Conjugation: First-Generation AJICAP. ACS Omega, 2019, 4, 20564-20570.	3.5	26
16	Chemical Site-Specific Conjugation Platform to Improve the Pharmacokinetics and Therapeutic Index of Antibody–Drug Conjugates. Molecular Pharmaceutics, 2021, 18, 4058-4066.	4.6	26
17	Synthesis and Biological Evaluation of Antibody Drug Conjugates Based on an Antibody Expression System: Conamax. ACS Omega, 2020, 5, 7193-7200.	3.5	25
18	Gram-Scale Antibody–Drug Conjugate Synthesis by Site-Specific Chemical Conjugation: AJICAP First Generation. Organic Process Research and Development, 2019, 23, 2647-2654.	2.7	23

#	Article	IF	CITATIONS
19	Analytical Comparison of Antibody-drug Conjugates Based on Good Manufacturing Practice Strategies. Analytical Sciences, 2020, 36, 871-875.	1.6	23
20	Proof of site-specificity of antibody-drug conjugates produced by chemical conjugation technology: AJICAP first generation. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1140, 121981.	2.3	23
21	Application of Native Ion Exchange Mass Spectrometry to Intact and Subunit Analysis of Site-Specific Antibody–Drug Conjugates Produced by AJICAP First Generation Technology. Journal of the American Society for Mass Spectrometry, 2020, 31, 1706-1712.	2.8	22
22	Chromatographic analysis of site-specific antibody-drug conjugates produced by AJICAP first-generation technology using a recombinant Fcl³llla receptor-ligand affinity column. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1177, 122753.	2.3	21
23	Insight into Temperature Dependency and Design of Experiments towards Process Development for Cysteineâ∈Based Antibodyâ∈Drug Conjugates. ChemistrySelect, 2020, 5, 8435-8439.	1.5	20
24	Synthesis and Evaluation of Dolastatin 10 Analogues Containing Heteroatoms on the Amino Acid Side Chains. Journal of Natural Products, 2017, 80, 2484-2491.	3.0	16
25	In-situ Reverse Phased HPLC Analysis of Intact Antibody-Drug Conjugates. Analytical Sciences, 2021, 37, 1171-1176.	1.6	16
26	Synthesis and Evaluation of Linear and Macrocyclic Dolastatin 10 Analogues Containing Pyrrolidine Ring Modifications. ACS Omega, 2018, 3, 5212-5221.	3.5	13
27	Physical characteristics comparison between maytansinoid-based and auristatin-based antibody-drug conjugates. Exploration of Targeted Anti-tumor Therapy, 0, , .	0.8	8
28	Crystal structure of methyl 2-(1-acetamido-4-oxocyclohexa-2,5-dienyl)- acetate, C11H13NO4. Zeitschrift Fur Kristallographie - New Crystal Structures, 2008, 223, 205-206.	0.3	0
29	Crystal structure of N-((2aR,2a1S,3S,5aS,7R)-3,7-dihydroxy-) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 347 Kristallographie - New Crystal Structures, 2008, 223, 203-204.	Td (2a,2a) 0.3	1,3,5a,6,7-he 0