
Erwine Pargon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5428920/publications.pdf Version: 2024-02-01

FOWINE PARCON

#	Article	IF	CITATIONS
1	Influence of the carrier wafer during GaN etching in Cl2 plasma. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, 023202.	0.9	6
2	Anisotropic and low damage III-V/Ge heterostructure etching for multijunction solar cell fabrication with passivated sidewalls. Micro and Nano Engineering, 2021, 11, 100083.	1.4	7
3	Suppression of Parasitic Nonlinear Processes in Spontaneous Four-Wave Mixing with Linearly Uncoupled Resonators. Physical Review Letters, 2021, 127, 033901.	2.9	11
4	Photoluminescence mapping of the strain induced in InP and GaAs substrates by SiN stripes etched from thin films grown under controlled mechanical stress. Thin Solid Films, 2020, 706, 138079.	0.8	4
5	Mechanical stress in InP and GaAs ridges formed by reactive ion etching. Journal of Applied Physics, 2020, 128, 225705.	1.1	2
6	New route for selective etching in remote plasma source: Application to the fabrication of horizontal stacked Si nanowires for gate all around devices. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	10
7	Two-step cycling process alternating implantation and remote plasma etching for topographically selective etching: Application to Si3N4 spacer etching. Journal of Applied Physics, 2019, 126, .	1.1	13
8	Ultralow-loss tightly confining Si ₃ N ₄ waveguides and high-Q microresonators. Optics Express, 2019, 27, 30726.	1.7	85
9	Improvement of Sidewall Roughness of Submicron SOI Waveguides by Hydrogen Plasma and Annealing. IEEE Photonics Technology Letters, 2018, 30, 591-594.	1.3	34
10	Low damage patterning of In0.53Ga0.47As film for its integration as n-channel in a fin metal oxide semiconductor field effect transistor architecture. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	0.9	5
11	Mapping of mechanical strain induced by thin and narrow dielectric stripes on InP surfaces. Optics Letters, 2018, 43, 3505.	1.7	7
12	Spectral analysis of sidewall roughness during resist-core self-aligned double patterning integration. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, 051807.	0.6	4
13	Smoothing mechanisms involved in thermal treatment for linewidth roughness reduction of 193-nm photoresist patterns. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, 061203.	0.6	5
14	Atomic-scale silicon etching control using pulsed Cl2 plasma. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, .	0.6	17
15	Benefits of plasma treatments on critical dimension control and line width roughness transfer during gate patterning. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, 012205.	0.6	30
16	Silicon recess minimization during gate patterning using synchronous plasma pulsing. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, .	0.6	25
17	HBr Plasma Treatment Versus VUV Light Treatment to Improve 193 nm Photoresist Pattern Linewidth Roughness. Plasma Processes and Polymers, 2011, 8, 1184-1195.	1.6	25
18	193nm resist chemical modification induced by HBr cure plasma treatment: a TD-GC/MS outgassing study. Proceedings of SPIE, 2011, , .	0.8	3

#	Article	IF	CITATIONS
19	Reducing damage to Si substrates during gate etching processes by synchronous plasma pulsing. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 926-934.	0.6	63