Dae Young Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5428833/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical oxidative bromolactonization of unsaturated carboxylic acids with sodium bromide: Synthesis of bromomethylated Î ³ -lactones. Tetrahedron Letters, 2022, 88, 153567.	0.7	7
2	Enantioselective one-pot synthesis of 2-amino-4 <i>H</i> -chromenes via Câ^'H oxidation and Michael addition/ring closure sequences. Synthetic Communications, 2022, 52, 291-299.	1.1	6
3	Electrochemical bromolactonization of alkenoic acids with carbon tetrabromide: Synthesis of bromomethylated Î ³ -lactones. Synthetic Communications, 2022, 52, 402-412.	1.1	4
4	Synthesis of Trifluoromethylated 4 <i>H</i> â€lâ€Benzopyran Derivatives via Photocatalytic Trifluoromethylation/Oxidation/Conjugate Addition, and Cyclization Sequences of Vinyl Phenols. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	6
5	Synthesis of selenated γâ€lactones via photoredoxâ€catalyzed selenylation and ring closure of alkenoic acids with diselenides. Bulletin of the Korean Chemical Society, 2022, 43, 941-945.	1.0	7
6	Photocatalyst-free photoredox synthesis of diaryl selenides by reaction of diselenides with aryldiazo sulfones. Synthetic Communications, 2021, 51, 720-726.	1.1	8
7	Visible Light Photocatalytic Trifluoromethylation/SET Oxidation/Cycloaddition Sequences of 2â€Vinyl Phenols: Multicomponent Synthesis of 4 <i>H</i> â€Chromenes. Asian Journal of Organic Chemistry, 2021, 10, 799-802.	1.3	8
8	Electrochemical Oxidative Arylsulfonylation and 1, <scp>2â€Alkyl</scp> Shift Sequences of Alkenyl Cyclobutanols for the Synthesis of <scp>β‣ulfonated</scp> Cyclopentanones. Bulletin of the Korean Chemical Society, 2021, 42, 510-513.	1.0	16
9	Electrochemical Oxidative Selenolactonization of Alkenoic Acids with Diselenides: Synthesis of Selenated Î³â€Łactones. Asian Journal of Organic Chemistry, 2021, 10, 3271-3274.	1.3	13
10	Visible light-mediated photocatalytic phosphorylation of vinyl azides: A mild synthesis of β-ketophosphine oxides. Synthetic Communications, 2020, 50, 380-387.	1.1	14
11	Photocatalytic reductive sulfonylation and 1,2-alkyl migration cascades of vinyl cyclobutanols: A synthesis of Î ² -sulfonated cyclopentanones. Synthetic Communications, 2020, 50, 207-216.	1.1	18
12	Visible light-mediated photocatalytic bromination of 2-arylimidazo[1,2- <i>a</i>]pyridines using CBr ₄ as bromine source. Synthetic Communications, 2020, 50, 197-206.	1.1	25
13	Organocatalytic Enantioselective Cycloaddition of <i>o</i> â€Quinone Methides with Oxazolones: Asymmetric Synthesis of Dihydrocoumarins. ChemistrySelect, 2020, 5, 13259-13262.	0.7	10
14	Enantioselective Organocatalytic Michael Addition and Ring Closure Cascade Reaction of <scp><i>o</i>â€Quinone</scp> Methides with Nitriles. Bulletin of the Korean Chemical Society, 2020, 41, 570-573.	1.0	7
15	Transition Metalâ€free Phosphorylation of Vinyl Azides: A Convenient Synthesis of βâ€Ketophosphine Oxides. Bulletin of the Korean Chemical Society, 2020, 41, 370-373.	1.0	11
16	Electrochemical oxidative iodination of imidazo[1,2- <i>a</i>]pyridines using Nal as iodine source. Synthetic Communications, 2020, 50, 710-718.	1.1	28
17	Copperâ€promoted Synthesis of βâ€Selenylated Cyclopentanones via Selenylation and 1,2â€Alkyl Migration Sequences of Alkenyl Cyclobutanols. Bulletin of the Korean Chemical Society, 2020, 41, 378-381.	1.0	9
18	Electrochemical Radical Selenylation/1,2-Carbon Migration and Dowd–Beckwith-Type Ring-Expansion Sequences of Alkenylcyclobutanols. Organic Letters, 2019, 21, 1021-1025.	2.4	81

#	Article	IF	CITATIONS
19	Electrochemical oxidative selenylation of imidazo[1,2–a]pyridines with diselenides. Tetrahedron Letters, 2019, 60, 739-742.	0.7	42
20	Synthesis of β-Selenylated Cyclopentanones via Photoredox-Catalyzed Selenylation/Ring-Expansion Cascades of Alkenyl Cyclobutanols. Synlett, 2019, 30, 1361-1365.	1.0	24
21	Catalyst-free selenylation/semipinacol rearrangement cascades of alkenyl cyclobutanols: synthesis of β-selenylated cyclopentanones. Synthetic Communications, 2019, 49, 2203-2209.	1.1	10
22	Synthesis of Î ² -selenylated ketones via iodine-mediated selenylation/1,2-carbon migration sequences of alkenyl alcohols. Tetrahedron Letters, 2019, 60, 1538-1542.	0.7	20
23	Synthesis of Fluoromethyl‣ubstituted Cyclopentanones via Radical Fluorination and 1,2â€Alkyl Migration Cascade of Alkenyl Cyclobutanols. Asian Journal of Organic Chemistry, 2019, 8, 679-682.	1.3	20
24	Electrochemical trifluoromethylation/semipinacol rearrangement sequences of alkenyl alcohols: synthesis of β-CF ₃ -substituted ketones. Organic and Biomolecular Chemistry, 2019, 17, 3319-3323.	1.5	42
25	Electrochemical radical arylsulfonylation/semipinacol rearrangement sequences of alkenylcyclobutanols: Synthesis of β-sulfonated cyclic ketones. Tetrahedron Letters, 2019, 60, 1287-1290.	0.7	41
26	Photocatalytic Synthesis of β‣ulfonated Cyclopentanones via Sulfonylation and Semipinacolâ€ŧype Rearrangement Cascades of Vinyl Cyclobutanols. Bulletin of the Korean Chemical Society, 2019, 40, 1244-1247.	1.0	9
27	Asymmetric Michael Addition of Pyrazolones to β,γâ€Unsaturated αâ€Keto Esters Catalyzed by Binaphthylâ€modified Thiourea. Bulletin of the Korean Chemical Society, 2018, 39, 579-582.	1.0	8
28	Visible light photoredox-catalyzed difluoromethylation and ring expansion of 1-(1-arylvinyl)cyclobutanols. Journal of Fluorine Chemistry, 2018, 211, 119-123.	0.9	43
29	Thiourea atalyzed Oxidative Coupling Reaction of <i>N</i> â€Phenyl Tetrahydroisoquinoline with βâ€Keto Acids. Bulletin of the Korean Chemical Society, 2018, 39, 12-13.	1.0	9
30	Enantioselective Decarboxylative Alkylation of β-Keto Acids to <i>ortho</i> -Quinone Methides as Reactive Intermediates: Asymmetric Synthesis of 2,4-Diaryl-1-benzopyrans. Organic Letters, 2018, 20, 2944-2947.	2.4	73
31	Enantioselective Organocatalytic Mannich Reaction and Fluorination Sequence of Pyrazolones to Isatinâ€derived Ketimines. Bulletin of the Korean Chemical Society, 2018, 39, 1442-1448.	1.0	10
32	Potassium iodide-mediated radical arylsulfonylation/1,2-carbon migration sequences for the synthesis of β-sulfonated cyclic ketones. Tetrahedron Letters, 2018, 59, 3863-3866.	0.7	22
33	Visible Light Photoredoxâ€Catalyzed Arylation of Quinoxalinâ€2(1 <i>H</i>)â€ones with Aryldiazonium Salts. ChemistrySelect, 2018, 3, 5824-5827.	0.7	44
34	Visible light photoredox-catalyzed phosphorylation of quinoxalin-2(1H)-ones. Tetrahedron Letters, 2018, 59, 2443-2446.	0.7	84
35	Photocatalystâ€free Photoredox Arylation of Quinoxalinâ€2(1 <i>H</i>)â€Ones with Aryldiazo Sulfones. Bulletin of the Korean Chemical Society, 2018, 39, 1003-1006.	1.0	27
36	Synthesis of 2,4â€Diarylâ€4 <i>H</i> â€Chromenes via Decarboxylative Alkylation of βâ€Keto Acids to <i>ortho</i> â€Quinone Methides as Reactive Intermediates. Bulletin of the Korean Chemical Society, 2018, 39, 1007-1010.	1.0	8

#	Article	IF	CITATIONS
37	Highly Diastereo―and Enantioselective Organocatalyzed Michael/Oxaâ€Michael Sequence: Asymmetric Synthesis of Pyranonaphthoquinone Derivatives. Bulletin of the Korean Chemical Society, 2018, 39, 1160-1164.	1.0	9
38	Synthesis of Ring-Fused 1-Benzazepines via [1,5]-Hydride Shift/7-Endo Cyclization Sequences. Organic Letters, 2017, 19, 1334-1337.	2.4	101
39	Visible light mediated photocatalytic oxidative coupling reaction of N -phenyl tetrahydroisoquinoline with β-keto acids. Tetrahedron Letters, 2017, 58, 1592-1594.	0.7	22
40	Synthesis of Ringâ€fused Tetrahydroquinoline Derivatives via [1,5]â€Hydride Transfer/Cyclization Sequences. Bulletin of the Korean Chemical Society, 2017, 38, 578-581.	1.0	15
41	Thiourea atalyzed 1,5â€Hydride Transfer and Cyclization Sequences: Synthesis of Tetrahydroquinoline Derivatives. Bulletin of the Korean Chemical Society, 2017, 38, 421-422.	1.0	12
42	Thiourea-catalyzed 1,5-hydride transfer and ring closure sequences of o-dialkylamino-substituted nitrostyrenes: Synthesis of ring-fused tetrahydroquinoline derivatives. Synthetic Communications, 2017, 47, 2109-2114.	1.1	10
43	Organocatalytic asymmetric conjugate addition of 2-fluoro-1,3-diketones to nitroalkenes. Journal of Fluorine Chemistry, 2017, 201, 43-48.	0.9	13
44	Enantioselective Conjugate Addition of Pyrazolones to Nitroalkenes Catalyzed by Binaphthylâ€modified Squaramide Organocatalyst. Bulletin of the Korean Chemical Society, 2017, 38, 1242-1245.	1.0	10
45	Diethyl Azodicarboxylateâ€promoted Oxidative Coupling Reaction of <i>N</i> â€Phenyl Tetrahydroisoquinoline with βâ€Keto Acids. Bulletin of the Korean Chemical Society, 2017, 38, 1499-1502.	1.0	14
46	Enantioselective addition of diphenyl phosphonate to ketimines derived from isatins catalyzed by binaphthyl-modified organocatalysts. Beilstein Journal of Organic Chemistry, 2016, 12, 1551-1556.	1.3	17
47	Organo- and Organometallic-Catalytic Intramolecular [1,5]-Hydride Transfer/Cyclization Process through C(sp ³)-H Bond Activation. Chemical Record, 2016, 16, 1191-1203.	2.9	113
48	Suppression of TLRs signaling pathways by 1-[5-methoxy-2-(2-nitrovinyl)phenyl]pyrrolidine. International Immunopharmacology, 2016, 35, 193-200.	1.7	1
49	Catalytic Enantioselective Alkylation of βâ€Keto Esters with Xanthydrol in the Presence of Chiral Palladium Complex. Bulletin of the Korean Chemical Society, 2016, 37, 5-6.	1.0	4
50	Visible Light Photoredox-Catalyzed Arylative Ring Expansion of 1-(1-Arylvinyl)cyclobutanol Derivatives. Organic Letters, 2016, 18, 4562-4565.	2.4	65
51	Visible light photoredox-catalyzed alkylation/ring expansion sequences of 1-(1-arylvinyl)cyclobutanol derivatives. Tetrahedron Letters, 2016, 57, 4371-4374.	0.7	38
52	Suppression of Tollâ€Like Receptor 4 Dimerization by 1â€{5â€Methoxyâ€2â€(2â€nitrovinyl)phenyl]pyrrolidine. Archiv Der Pharmazie, 2016, 349, 785-790.	2.1	4
53	1-[4-Fluoro-2-(2-nitrovinyl)phenyl]pyrrolidine Suppresses Toll-Like Receptor 4 Dimerization Induced by Lipopolysaccharide. Journal of Immunoassay and Immunochemistry, 2016, 37, 307-315.	0.5	1
54	Diastereo―and Enantioselective Conjugate Addition of αâ€5ubstituted Cyanoacetates to Maleimides Catalyzed by Binaphthylâ€based Thiourea. Bulletin of the Korean Chemical Society, 2015, 36, 2371-2374.	1.0	5

#	Article	lF	CITATIONS
55	Organocatalytic Asymmetric Michael Addition of αâ€Fluoro βâ€Ketophosphonate to Nitroalkenes. Bulletin of the Korean Chemical Society, 2015, 36, 2936-2939.	1.0	8
56	Thiourea atalyzed Intramolecular Allylic Amination: Synthesis of Dihydroquinoline Derivatives. Bulletin of the Korean Chemical Society, 2015, 36, 370-373.	1.0	8
57	Diastereo―and Enantioselective Conjugate Addition of 3â€Chlorooxindoles to Nitroalkenes Catalyzed by Binaphthylâ€modified Organocatalyst. Bulletin of the Korean Chemical Society, 2015, 36, 1516-1519.	1.0	13
58	Synthesis of Tetrahydroquinoline Derivatives via Oxidation and 1,5â€Hydride Transfer/Cyclization Cascade. Bulletin of the Korean Chemical Society, 2015, 36, 406-409.	1.0	20
59	Catalytic Asymmetric Michael Addition of αâ€Fluoro βâ€Ketoester to Nitroalkenes in the Presence of Nickel Complexes. Bulletin of the Korean Chemical Society, 2015, 36, 1947-1948.	1.0	10
60	Enantioselective fluorination of \hat{l}^2 -ketoamides in the presence of chiral palladium complexes. Journal of Fluorine Chemistry, 2015, 180, 201-207.	0.9	15
61	Catalytic asymmetric conjugate addition of α-fluoro β-ketophosphonates to nitroalkenes in the presence of nickel complexes. Journal of Fluorine Chemistry, 2015, 178, 40-46.	0.9	25
62	Organocatalytic Enantioselective Conjugate Addition of 3â€Fluorooxindoles to Vinyl Sulfone. Bulletin of the Korean Chemical Society, 2015, 36, 1512-1515.	1.0	16
63	Visible-light-induced photocatalytic trifluoromethylation/1,2-carbon migration sequences for the synthesis of CF3-substituted cyclic ketones. Journal of Fluorine Chemistry, 2015, 178, 214-218.	0.9	67
64	Visible-light-mediated photocatalytic difluoroalkylation/1,2-carbon migration sequences: synthesis of difluoroalkyl-substituted cyclic ketones. Tetrahedron Letters, 2015, 56, 5661-5664.	0.7	54
65	Suppressive effects of 1-[4-fluoro-2-(2-nitrovinyl)phenyl]pyrrolidine on the Toll-like receptor signaling pathways. International Immunopharmacology, 2015, 24, 36-41.	1.7	5
66	Asymmetric Synthesis of Tetrahydroquinolines via Saegusaâ€ŧype Oxidative Enamine Catalysis/1,5â€Hydride Transfer/Cyclization Sequences. Asian Journal of Organic Chemistry, 2014, 3, 399-402.	1.3	73
67	Enantioselective organocatalytic oxidative enamine catalysis–1,5-hydride transfer–cyclization sequences: asymmetric synthesis of tetrahydroquinolines. Chemical Communications, 2014, 50, 222-224.	2.2	103
68	Enantioselective One-Pot Synthesis of Ring-Fused Tetrahydroquinolines via Aerobic Oxidation and 1,5-Hydride Transfer/Cyclization Sequences. Organic Letters, 2014, 16, 5374-5377.	2.4	97
69	Organocatalytic Asymmetric Michael Addition of 1,3-Cyclohexanedione to Benzylidenemalonitriles. Bulletin of the Korean Chemical Society, 2014, 35, 98-102.	1.0	26
70	Suppression of inducible nitric oxide synthase expression induced by Toll-like receptor agonists by (E)-1-(2-(2-nitrovinyl)phenyl)pyrrolidine. International Immunopharmacology, 2013, 17, 205-209.	1.7	6
71	Organocatalytic enantioselective decarboxylative Michael addition of β-ketoacids to α,β-unsaturated ketones. RSC Advances, 2013, 3, 1332-1335.	1.7	68
72	Enantioselective fluorination of α-chloro-β-keto phosphonates in the presence of chiral palladium complexes. Tetrahedron Letters, 2013, 54, 3359-3362.	0.7	45

#	Article	IF	CITATIONS
73	Enantioselective decarboxylative aldol addition of β-ketoacids to isatins catalyzed by binaphthyl-modified organocatalyst. Tetrahedron Letters, 2013, 54, 3651-3654.	0.7	74
74	Suppression of TRIF-dependent signaling pathway of toll-like receptors by (E)-1-(2-(2-nitrovinyl)phenyl)pyrrolidine. European Journal of Pharmacology, 2013, 721, 109-115.	1.7	2
75	Asymmetric Synthesis of Tetrahydroquinolines <i>via</i> 1,5â€Hydride Transfer/Cyclization Catalyzed by Chiral Primary Amine Catalysts. Advanced Synthesis and Catalysis, 2013, 355, 3131-3136.	2.1	100
76	Organocatalytic Synthesis of Tetrahydroquinolines from α,β-Unsaturated Ketones via 1,5-Hydride Transfer/Cyclization. Bulletin of the Korean Chemical Society, 2013, 34, 3463-3466.	1.0	24
77	Organocatalytic Enantioselective Friedel-Crafts Reaction of Naphthol with β,γ-Unsaturated α-Keto Esters. Bulletin of the Korean Chemical Society, 2013, 34, 3539-3540.	1.0	11
78	Organocatalytic Oxidative Enamine Catalysis and 1,5-Hydride Transfer/Cyclization: Synthesis of Tetrahydroquinoline Derivatives. Bulletin of the Korean Chemical Society, 2013, 34, 3891-3894.	1.0	19
79	Enantioselective Michael Addition of 2-Hydroxy-1,4-naphthoquinone to β,γ-Unsaturated α-Keto Esters Catalyzed by Binaphthyl-Modified Squaramide. Bulletin of the Korean Chemical Society, 2013, 34, 1619-1620.	1.0	34
80	Organocatalytic Asymmetric Michael Addition of 4-Hydroxycoumarin to β,γ-Unsaturated α-Keto Esters. Bulletin of the Korean Chemical Society, 2013, 34, 1623-1624.	1.0	27
81	Enantioselective Direct α-Amination of Aromatic Ketones Catalyzed by Binaphthyl-Modified Primary Amine. Bulletin of the Korean Chemical Society, 2013, 34, 1955-1956.	1.0	20
82	Organocatalytic Enantioselective Michael Addition of Silyl Malonate to α,β-Unsaturated Enones: One-pot Synthesis of Chiral δ-Keto Esters. Bulletin of the Korean Chemical Society, 2013, 34, 2569-2570.	1.0	12
83	Catalytic Enantioselective Friedel-Crafts Alkylation of Indoles with Fumarate Derivatives in the Presence of Chiral Palladium Complexes. Synlett, 2012, 23, 1629-1632.	1.0	13
84	Enantioselective Michael addition of 2-hydroxy-1,4-naphthoquinones to nitroalkenes catalyzed by binaphthyl-derived organocatalysts. Beilstein Journal of Organic Chemistry, 2012, 8, 699-704.	1.3	34
85	Catalytic enantioselective bromolactonization of alkenoic acids in the presence of palladium complexes. Tetrahedron Letters, 2012, 53, 6984-6986.	0.7	56
86	Enantioselective decarboxylative Michael addition of β-ketoacids to nitroalkenes catalyzed by binaphthyl-derived organocatalysts. Tetrahedron Letters, 2012, 53, 6569-6572.	0.7	69
87	Enantioselective Michael Addition of 3-Aryl-Substituted Oxindoles to Methyl Vinyl Ketone Catalyzed by a Binaphthyl-Modified Bifunctional Organocatalyst. Molecules, 2012, 17, 7523-7532.	1.7	29
88	Enantioselective synthesis of nitrocyclopropanes via conjugate addition of bromomalonate to nitroalkenes catalyzed by Ni(II) complexes. Tetrahedron Letters, 2012, 53, 3437-3439.	0.7	52
89	Enantio- and diastereoselective Michael addition reactions of α-cyanoketones to nitroalkenes catalyzed by binaphthyl-derived organocatalyst. Tetrahedron Letters, 2012, 53, 3374-3377.	0.7	42
90	Catalytic enantioselective chlorination of cyclic β-keto esters in the presence of chiral Pd(II) complexes. Tetrahedron Letters, 2012, 53, 3811-3814.	0.7	32

#	Article	IF	CITATIONS
91	Organocatalytic Asymmetric Michael Addition of 1,3-Cyclohexanedione to β,γ-Unsaturated α-Keto Esters. Bulletin of the Korean Chemical Society, 2012, 33, 3537-3538.	1.0	14
92	Inhibition of homodimerization of Toll-like receptor 4 by 4-oxo-4-(2-oxo-oxazolidin-3-yl)-but-2-enoic acid ethyl ester. International Immunopharmacology, 2011, 11, 19-22.	1.7	10
93	Inhibition of homodimerization of toll-like receptor 4 by (E)-isopropyl 4-oxo-4-(2-oxopyrrolidin-1-yl)-2-butenoate. Toxicology and Environmental Health Sciences, 2011, 3, 86-90.	1.1	0
94	Suppression of cyclooxygenase-2 expression induced by Toll-like receptor 2 or 4 agonists by (E)-isopropyl 4-oxo-4-(2-oxopyrrolidin-1-yl)-2-butenoate. Molecular and Cellular Toxicology, 2011, 7, 39-44.	0.8	3
95	Catalytic asymmetric Mannich-type reactions of fluorinated ketoesters with N-Boc aldimines in the presence of chiral palladium complexes. Tetrahedron Letters, 2011, 52, 2356-2358.	0.7	62
96	Chiral Pd-catalyzed enantioselective Friedel–Crafts reaction of indoles with γ,Î′-unsaturated β-keto phosphonates. Tetrahedron Letters, 2011, 52, 3247-3249.	0.7	51
97	Highly Enantioselective Conjugate Addition of 3-Substituted Oxindoles to Vinyl Sulfone Catalyzed by Binaphthyl-Modified Tertiary Amines. Synlett, 2011, 2011, 1559-1562.	1.0	3
98	Catalytic Enantioselective Friedel-Crafts Alkylation of Indoles with β,γ-Unsaturated α-Keto Phosphonates in the Presence of Chiral Palladium Complexes. Synlett, 2011, 2011, 1125-1128.	1.0	10
99	Organocatalytic Enantioselective Mannich-Type Reactions of Fluorinated Keto Esters with N-Boc-Aldimines. Synlett, 2011, 2011, 420-424.	1.0	11
100	Suppression of the TRIF-dependent signaling pathway of toll-like receptors by (E)-isopropyl 4-oxo-4-(2-oxopyrrolidin-1-yl)-2-butenoate. BMB Reports, 2011, 44, 468-472.	1.1	1
101	Recent Advances in Catalytic Enantioselective Fluorination of Active Methines. Current Organic Chemistry, 2010, 14, 917-927.	0.9	57
102	Suppression of the TRIF-dependent signaling pathway of toll-like receptors by 4-oxo-4-(2-oxo-oxazolidin-3-yl)-but-2-enoic acid ethyl ester. Toxicology and Environmental Health Sciences, 2010, 2, 153-157.	1.1	1
103	Catalytic Enantioselective Fluorination of αâ€Chloroâ€Î²â€keto Esters in the Presence of Chiral Nickel Complexes. Advanced Synthesis and Catalysis, 2010, 352, 2783-2786.	2.1	72
104	Enantioselective organocatalytic conjugate addition of α-nitroacetate to α,β-unsaturated ketones in water. Tetrahedron Letters, 2010, 51, 2906-2908.	0.7	57
105	Organocatalytic Highly Enantioselective Mannich-Type Reactions of Fluoromalonate with N-Boc-Aldimines. Synthesis, 2010, 2010, 1860-1864.	1.2	5
106	Enantioselective Organocatalytic Câ^'H Bond Functionalization via Tandem 1,5-Hydride Transfer/Ring Closure: Asymmetric Synthesis of Tetrahydroquinolines. Journal of the American Chemical Society, 2010, 132, 11847-11849.	6.6	294
107	Suppression of Toll-like receptor 2 or 4 agonist-induced cyclooxygenase-2 expression by 4-oxo-4-(2-oxo-oxazolidin-3-yl)-but-2-enoic acid ethyl ester. International Immunopharmacology, 2010, 10, 163-168.	1.7	5
108	Addition of Allylindium Reagents to α-Iminotrifluoroethyl-phosphonates: Synthesis of CF3-Containing α-Aminoalkylphosphonates. Synthetic Communications, 2009, 39, 792-798.	1.1	5

#	Article	IF	CITATIONS
109	Enantio―and Diastereoselective Mannichâ€Type Reactions of αâ€Cyano Ketones with <i>N</i> â€Boc Aldimines Catalyzed by Chiral Bifunctional Urea. Advanced Synthesis and Catalysis, 2009, 351, 1779-1782.	2.1	59
110	Organocatalytic synthesis of quaternary stereocenter bearing a fluorine atom: enantioselective conjugate addition of α-fluoro-β-ketoesters to nitroalkenes. Tetrahedron Letters, 2009, 50, 4674-4676.	0.7	71
111	Enantioselective α-hydrazination of α-fluoro-β-ketoesters catalyzed by chiral nickel complexes. Journal of Fluorine Chemistry, 2009, 130, 259-262.	0.9	58
112	Highly enantioselective conjugate addition of fluoromalonates to nitroalkenes using bifunctional organocatalysts. Journal of Fluorine Chemistry, 2009, 130, 759-761.	0.9	62
113	Catalytic enantioselective conjugate addition of aromatic amines to fumarate derivatives: asymmetric synthesis of aspartic acid derivatives. Tetrahedron, 2009, 65, 5676-5679.	1.0	51
114	Enantioselective conjugate addition of fluorobis(phenylsulfonyl)methane to α,β-unsaturated ketones catalyzed by chiral bifunctional organocatalysts. Tetrahedron Letters, 2009, 50, 4896-4898.	0.7	81
115	Organocatalytic Highly Enantio- and Diastereoselective Mannich Reaction of β-Ketoesters with <i>N</i> -Boc-aldimines. Journal of Organic Chemistry, 2009, 74, 5734-5737.	1.7	89
116	Catalytic enantioselective electrophilic α-hydrazination of β-ketoesters using bifunctional organocatalysts. Tetrahedron Letters, 2008, 49, 5527-5530.	0.7	104
117	Enantioselective Direct Amination of α-Cyanoketones Catalyzed by Bifunctional Organocatalysts. Synlett, 2008, 2008, 2659-2662.	1.0	51
118	Catalytic Asymmetric Electrophilic α-Amination of α-Cyanoketones in the Presence of Chiral Palladium Complexes. Synlett, 2008, 2008, 1821-1824.	1.0	3
119	Catalytic enantioselective electrophilic α-amination of β-ketoesters catalyzed by chiral palladium complexes. Tetrahedron Letters, 2006, 47, 4565-4568.	0.7	88
120	Catalytic enantioselective fluorination of α-cyano acetates catalyzed by chiral palladium complexes. Tetrahedron Letters, 2005, 46, 3115-3117.	0.7	116
121	Catalytic Enantioselective Fluorination and Amination of β-Keto Phosphonates Catalyzed by Chiral Palladium Complexes. Organic Letters, 2005, 7, 2309-2311.	2.4	161
122	Two-Photon Absorption Properties of 2,6-Bis(styryl)anthracene Derivatives: Effects of Donor-Acceptor Substituents and the π Center. Chemistry - A European Journal, 2005, 11, 4191-4198.	1.7	75
123	Catalytic Enantioselective Fluorination of α-Cyano Acetates Catalyzed by Chiral Palladium Complexes ChemInform, 2005, 36, no.	0.1	0
124	Enantioselective Alkylation of β-Keto Esters by Phase-Transfer Catalysis Using Chiral Quaternary Ammonium Salts. Journal of Organic Chemistry, 2004, 69, 6897-6899.	1.7	135
125	Triphenylamine Derivatives with Large Two-Photon Cross-Sections. Organic Letters, 2004, 6, 1389-1392.	2.4	82
126	Enantioselective Epoxidation of α,β-Unsaturated Ketones by Phase-Transfer Catalysis Using Chiral Quaternary Ammonium Salts ChemInform, 2003, 34, no.	0.1	0

#	Article	IF	CITATIONS
127	Addition of allylindium reagents to acyl phosphonates: synthesis of tertiary α-hydroxy alkylphosphonates. Tetrahedron Letters, 2003, 44, 2803-2805.	0.7	47
128	Enantioselective Epoxidation of \hat{I}_{\pm}, \hat{I}^2 -Unsaturated Ketones by Phase-Transfer Catalysis Using Chiral Quaternary Ammonium Salts. Synthetic Communications, 2003, 33, 435-443.	1.1	47
129	Catalytic Enantioselective Fluorination of β-Keto Esters by Phase-Transfer Catalysis Using Chiral Quaternary Ammonium Salts. Organic Letters, 2002, 4, 545-547.	2.4	263
130	Enantioselective Michael reaction of malonates and chalcones by phase-transfer catalysis using chiral quaternary ammonium salt. Tetrahedron Letters, 2001, 42, 6299-6301.	0.7	148
131	Enantioselective Michael reaction of nitroalkanes and chalcones by phase-transfer catalysis using chiral quaternary ammonium salts. Tetrahedron, 2001, 57, 8933-8938.	1.0	86
132	TRANSFORMATION OF ALLYL STANNANES INTO ALLYL AMINES USING [N-(p-TOLUENESULFONYL)IMINO]-PHENYLIODINANE. Synthetic Communications, 2001, 31, 2463-2469.	1.1	6
133	MICHAEL ADDITION OFN-(DIPHENYLMETHYLENE)- AMINOMETHYLPHOSPHONATE TO ACRYLATES USING PHASE TRANSFER CATALYSIS CONDITIONS: SYNTHESIS OF 1-(N-DIPHENYLMETHYLENE)AMINO- 3-(ALKOXYCARBONYL)- PROPYLPHOSPHONATES. Synthetic Communications, 2001, 31, 3315-3322.	1.1	16
134	A Facile P-C Bond Cleavage of 2-Fluoro-2-Phosphonyl-1,3-Dicarbonyl Compounds on Silica Gel. Synthetic Communications, 2000, 30, 1205-1212.	1.1	9
135	Asymmetric Synthesis of Aziridinyl Phosphonates Using Darzens-Type Reaction of Chloromethyl Phosphonate to Chiral Sulfinimines. Synthetic Communications, 2000, 30, 87-95.	1.1	21
136	Solid Phase Acylation of Phosphonoacetates Synthesis of \hat{I}^2 -Keto Phosphonates from Polymer Bound Phosphonoacetate. Synthetic Communications, 1999, 29, 1271-1275.	1.1	6
137	Acylation of α-fluorophosphonoacetate derivatives using magnesium chloride-triethylamine. Tetrahedron, 1999, 55, 12983-12990.	1.0	17
138	A Convenient Synthesis of Cycloalkylphosphonates from (Phenylsulfonyl)methylphosphonate. Synthetic Communications, 1998, 28, 83-91.	1.1	11
139	Synthesis of α-Fluoro-β-keto Phosphonates from α-Fluoro Phosphonoacetatic Acid. Synthetic Communications, 1998, 28, 1491-1498.	1.1	11
140	Transformation of Allylic Silanes Into Allylic Amines Using [N-(P-Toluenesulfonyl)Imino]Phenyliodinane. Synthetic Communications, 1997, 27, 2753-2760.	1.1	12
141	P-C Bond Cleavage of Triethyl 2-Fluoro-3-oxo-2-phosphonoacetates with Magnesium Chloride: A Synthesis of α-Fluoro-β-keto Esters. Synthetic Communications, 1997, 27, 1097-1103.	1.1	9
142	Synthesis of α-aminoalkylphosphonates from vinylphosphonates via aziridinylphosphonates. Tetrahedron, 1997, 53, 13603-13608.	1.0	69
143	A Practical Synthesis of β-Keto Phosphonates from Triethyl Phosphonoacetate. Synthetic Communications, 1996, 26, 2487-2496.	1.1	17
144	Acylation of diethyl (ethoxycarbonyl)fluoromethylphosphonate using magnesium chloride-triethylamine: A facile synthesis of α-fluoro β-keto esters. Tetrahedron Letters, 1996, 37, 653-654.	0.7	26

#	Article	IF	CITATIONS
145	A New Synthesis of 2-Aryl-2-Oxoalkylphosphonates from Triethyl Phosphonoacetate. Synthetic Communications, 1995, 25, 2865-2869.	1.1	9
146	Reaction of Silyl Enol Ethers with Phosphite Using Hypervalent Iodine Compound: A New Synthesis of 2-Aryl-2-oxoalkylphosphonates. Synthetic Communications, 1994, 24, 629-634.	1.1	20
147	Reaction of allyltrimethylsilane with an aromatic compound using hypervalent organoiodine compound: A new allylation of aromatic compounds. Tetrahedron Letters, 1988, 29, 667-668.	0.7	56