
## Weilong Hao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5428817/publications.pdf Version: 2024-02-01



WELLONG HAD

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The fate of laterally transferred genes: Life in the fast lane to adaptation or death. Genome Research,<br>2006, 16, 636-643.                                                                                                                     | 2.4 | 164       |
| 2  | Microflora of the Gastrointestinal Tract: A Review. , 2004, 268, 491-502.                                                                                                                                                                         |     | 161       |
| 3  | Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes. BMC Biology, 2010, 8, 150.                                                                               | 1.7 | 104       |
| 4  | Strand-biased cytosine deamination at the replication fork causes cytosine to thymine mutations in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2176-2181.               | 3.3 | 94        |
| 5  | Gorgeous mosaic of mitochondrial genes created by horizontal transfer and gene conversion.<br>Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21576-21581.                                            | 3.3 | 88        |
| 6  | Gene Gain and Gene Loss in Streptococcus: Is It Driven by Habitat?. Molecular Biology and Evolution, 2006, 23, 2379-2391.                                                                                                                         | 3.5 | 78        |
| 7  | Novel genetic code and record-setting AT-richness in the highly reduced plastid genome of the<br>holoparasitic plant <i>Balanophora</i> . Proceedings of the National Academy of Sciences of the<br>United States of America, 2019, 116, 934-943. | 3.3 | 66        |
| 8  | Horizontal Transfer and Gene Conversion as an Important Driving Force in Shaping the Landscape of<br>Mitochondrial Introns. G3: Genes, Genomes, Genetics, 2014, 4, 605-612.                                                                       | 0.8 | 65        |
| 9  | Fine-scale mergers of chloroplast and mitochondrial genes create functional, transcompartmentally chimeric mitochondrial genes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16728-16733.          | 3.3 | 64        |
| 10 | The role of laterally transferred genes in adaptive evolution. BMC Evolutionary Biology, 2007, 7, S8.                                                                                                                                             | 3.2 | 63        |
| 11 | Extensive Horizontal Transfer and Homologous Recombination Generate Highly Chimeric<br>Mitochondrial Genomes in Yeast. Molecular Biology and Evolution, 2015, 32, 2559-2570.                                                                      | 3.5 | 54        |
| 12 | Patterns of Bacterial Gene Movement. Molecular Biology and Evolution, 2004, 21, 1294-1307.                                                                                                                                                        | 3.5 | 50        |
| 13 | Extensive Genomic Variation within Clonal Complexes of Neisseria meningitidis. Genome Biology and Evolution, 2011, 3, 1406-1418.                                                                                                                  | 1.1 | 36        |
| 14 | Homologous Recombination Drives Both Sequence Diversity and Gene Content Variation in Neisseria meningitidis. Genome Biology and Evolution, 2013, 5, 1611-1627.                                                                                   | 1.1 | 34        |
| 15 | Genetic Drift and Indel Mutation in the Evolution of Yeast Mitochondrial Genome Size. Genome<br>Biology and Evolution, 2017, 9, 3088-3099.                                                                                                        | 1.1 | 31        |
| 16 | Uncovering rate variation of lateral gene transfer during bacterial genome evolution. BMC Genomics, 2008, 9, 235.                                                                                                                                 | 1.2 | 29        |
| 17 | A Dynamic Mobile DNA Family in the Yeast Mitochondrial Genome. G3: Genes, Genomes, Genetics, 2015, 5, 1273-1282.                                                                                                                                  | 0.8 | 24        |
| 18 | Mitochondrialâ€encoded endonucleases drive recombination of protein oding genes in yeast.<br>Environmental Microbiology, 2019, 21, 4233-4240.                                                                                                     | 1.8 | 24        |

Weilong Hao

| #  | Article                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | OrgConv: detection of gene conversion using consensus sequences and its application in plant mitochondrial and chloroplast homologs. BMC Bioinformatics, 2010, 11, 114.           | 1.2 | 22        |
| 20 | Phylogenetic Incongruence in E. coli O104: Understanding the Evolutionary Relationships of Emerging Pathogens in the Face of Homologous Recombination. PLoS ONE, 2012, 7, e33971. | 1.1 | 22        |
| 21 | Asymmetrical Evolution of Cytochrome bd Subunits. Journal of Molecular Evolution, 2006, 62, 132-142.                                                                              | 0.8 | 21        |
| 22 | HGT turbulence. Mobile Genetic Elements, 2011, 1, 256-304.                                                                                                                        | 1.8 | 20        |
| 23 | Evidence of intra-segmental homologous recombination in influenza A virus. Gene, 2011, 481, 57-64.                                                                                | 1.0 | 18        |
| 24 | Variable Spontaneous Mutation and Loss of Heterozygosity among Heterozygous Genomes in Yeast.<br>Molecular Biology and Evolution, 2020, 37, 3118-3130.                            | 3.5 | 17        |
| 25 | Rapidly Translated Polypeptides Are Preferred Substrates for Cotranslational Protein Degradation.<br>Journal of Biological Chemistry, 2016, 291, 9827-9834.                       | 1.6 | 16        |
| 26 | Origin and Spread of Spliceosomal Introns: Insights from the Fungal Clade Zymoseptoria. Genome<br>Biology and Evolution, 2017, 9, 2658-2667.                                      | 1.1 | 16        |
| 27 | Evolution of a Record-Setting AT-Rich Genome: Indel Mutation, Recombination, and Substitution Bias.<br>Genome Biology and Evolution, 2020, 12, 2344-2354.                         | 1.1 | 16        |
| 28 | Case study on the soil antibiotic resistome in an urban community garden. International Journal of<br>Antimicrobial Agents, 2018, 52, 241-250.                                    | 1.1 | 14        |
| 29 | Does Gene Translocation Accelerate the Evolution of Laterally Transferred Genes?. Genetics, 2009, 182, 1365-1375.                                                                 | 1.2 | 13        |
| 30 | Escherichia coliO104:H4 Infections and International Travel. Emerging Infectious Diseases, 2012, 18, 473-476.                                                                     | 2.0 | 13        |
| 31 | Inferring Bacterial Genome Flux While Considering Truncated Genes. Genetics, 2010, 186, 411-426.                                                                                  | 1.2 | 12        |
| 32 | DiscML: an R package for estimating evolutionary rates of discrete characters using maximum likelihood. BMC Bioinformatics, 2014, 15, 320.                                        | 1.2 | 12        |
| 33 | From Genome Variation to Molecular Mechanisms: What we Have Learned From Yeast Mitochondrial<br>Genomes?. Frontiers in Microbiology, 2022, 13, 806575.                            | 1.5 | 9         |
| 34 | High rates of lateral gene transfer are not due to false diagnosis of gene absence. Gene, 2008, 421,<br>27-31.                                                                    | 1.0 | 7         |
| 35 | Human Fecal Water Modifies Adhesion of Intestinal Bacteria to Caco-2 Cells. Nutrition and Cancer, 2005, 52, 35-42.                                                                | 0.9 | 6         |
| 36 | Unrecognized fine-scale recombination can mimic the effects of adaptive radiation. Gene, 2013, 518, 483-488.                                                                      | 1.0 | 4         |

Weilong Hao

| #  | Article                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Absence of Calponin 2 in Rabbits Suggests Caution in Choosing Animal Models. Frontiers in<br>Bioengineering and Biotechnology, 2020, 8, 42. | 2.0 | 4         |
| 38 | Extensive genomic variation within clonal bacterial groups resulted from homologous recombination. Mobile Genetic Elements, 2013, 3, e23463.    | 1.8 | 3         |
| 39 | Identification of Conflicting Selective Effects on Highly Expressed Genes. Evolutionary<br>Bioinformatics, 2007, 3, 117693430700300.            | 0.6 | 2         |
| 40 | Fast rates of evolution in bacteria due to horizontal gene transfer. , 2012, , 64-72.                                                           |     | 1         |