
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5428731/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism of Endosomal TLR Inhibition by Antimalarial Drugs and Imidazoquinolines. Journal of Immunology, 2011, 186, 4794-4804.	0.4	516
2	Characterization of quercetin binding site on DNA gyrase. Biochemical and Biophysical Research Communications, 2003, 306, 530-536.	1.0	286
3	Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments. Nature Chemical Biology, 2013, 9, 362-366.	3.9	272
4	Structural biology of the LPS recognition. International Journal of Medical Microbiology, 2007, 297, 353-363.	1.5	249
5	DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Research, 2012, 40, 1879-1889.	6.5	241
6	Chemistry of Lipidâ€A: At the Heart of Innate Immunity. Chemistry - A European Journal, 2015, 21, 500-519.	1.7	193
7	Similarities and Specificities of Fungal Keratinolytic Proteases: Comparison of Keratinases of Paecilomyces marquandii and Doratomyces microsporus to Some Known Proteases. Applied and Environmental Microbiology, 2005, 71, 3420-3426.	1.4	181
8	Three-dimensional domain swapping in the folded and molten-globule states of cystatins, an amyloid-forming structural superfamily. EMBO Journal, 2001, 20, 4774-4781.	3.5	179
9	Green Tea Catechins Inhibit Bacterial DNA Gyrase by Interaction with Its ATP Binding Site. Journal of Medicinal Chemistry, 2007, 50, 264-271.	2.9	178
10	The POM Monoclonals: A Comprehensive Set of Antibodies to Non-Overlapping Prion Protein Epitopes. PLoS ONE, 2008, 3, e3872.	1.1	162
11	Primary structure of a new cysteine proteinase inhibitor from pig leucocytes. FEBS Letters, 1989, 255, 211-214.	1.3	144
12	Design of coiled-coil protein-origami cages that self-assemble in vitro and in vivo. Nature Biotechnology, 2017, 35, 1094-1101.	9.4	143
13	Design of fast proteolysis-based signaling and logic circuits in mammalian cells. Nature Chemical Biology, 2019, 15, 115-122.	3.9	143
14	The Lipopolysaccharide Core of Brucella abortus Acts as a Shield Against Innate Immunity Recognition. PLoS Pathogens, 2012, 8, e1002675.	2.1	140
15	MD-2 as the target of curcumin in the inhibition of response to LPS. Journal of Leukocyte Biology, 2007, 82, 968-974.	1.5	130
16	Toll-Like Receptor 4 Activation in Cancer Progression and Therapy. Clinical and Developmental Immunology, 2011, 2011, 1-12.	3.3	123
17	Curcumin binds to the αâ€helical intermediate and to the amyloid form of prion protein – a new mechanism for the inhibition of PrP ^{Sc} accumulation. Journal of Neurochemistry, 2008, 104, 1553-1564.	2.1	117
18	Structural Model of MD-2 and Functional Role of Its Basic Amino Acid Clusters Involved in Cellular Lipopolysaccharide Recognition. Journal of Biological Chemistry, 2004, 279, 28475-28482.	1.6	115

#	Article	IF	CITATIONS
19	The Three-dimensional Solution Structure of Human Stefin A. Journal of Molecular Biology, 1995, 246, 331-343.	2.0	107
20	Enhancement of antibacterial and lipopolysaccharide binding activities of a human lactoferrin peptide fragment by the addition of acyl chain. Journal of Antimicrobial Chemotherapy, 2003, 51, 1159-1165.	1.3	102
21	NLRP3 lacking the leucine-rich repeat domain can be fully activated via the canonical inflammasome pathway. Nature Communications, 2018, 9, 5182.	5.8	102
22	Enhancement of endotoxin neutralization by coupling of a C12-alkyl chain to a lactoferricin-derived peptide. Biochemical Journal, 2005, 385, 135-143.	1.7	101
23	Essential Roles of Hydrophobic Residues in Both MD-2 and Toll-like Receptor 4 in Activation by Endotoxin. Journal of Biological Chemistry, 2009, 284, 15052-15060.	1.6	100
24	<i>De novo</i> design of orthogonal peptide pairs forming parallel coiledâ€coil heterodimers. Journal of Peptide Science, 2011, 17, 100-106.	0.8	100
25	Coiled coil protein origami: from modular design principles towards biotechnological applications. Chemical Society Reviews, 2018, 47, 3530-3542.	18.7	99
26	Mixed-valence Cu(II)/Cu(I) complex of quinolone ciprofloxacin isolated by a hydrothermal reaction in the presence of l-histidine: comparison of biological activities of various copper–ciprofloxacin compounds. Journal of Inorganic Biochemistry, 2005, 99, 432-442.	1.5	98
27	Endotoxin Neutralizing Peptides. Current Topics in Medicinal Chemistry, 2004, 4, 1173-1184.	1.0	97
28	Alexidine and chlorhexidine bind to lipopolysaccharide and lipoteichoic acid and prevent cell activation by antibiotics. Journal of Antimicrobial Chemotherapy, 2008, 62, 730-737.	1.3	89
29	Globular Domain of the Prion Protein Needs to Be Unlocked by Domain Swapping to Support Prion Protein Conversion. Journal of Biological Chemistry, 2011, 286, 12149-12156.	1.6	89
30	A tunable orthogonal coiled-coil interaction toolbox for engineering mammalian cells. Nature Chemical Biology, 2020, 16, 513-519.	3.9	89
31	pH-induced Conformational Transitions of the Propeptide of Human Cathepsin L. Journal of Biological Chemistry, 1998, 273, 11498-11504.	1.6	88
32	Designable DNA-binding domains enable construction of logic circuits in mammalian cells. Nature Chemical Biology, 2014, 10, 203-208.	3.9	88
33	NLRP3 inflammasome activation in macrophage cell lines by prion protein fibrils as the source of IL-1Î ² and neuronal toxicity. Cellular and Molecular Life Sciences, 2012, 69, 4215-4228.	2.4	83
34	Synthetic lipopeptides: a novel class of anti-infectives. Expert Opinion on Investigational Drugs, 2007, 16, 1159-1169.	1.9	82
35	Structural Origin of Endotoxin Neutralization and Antimicrobial Activity of a Lactoferrin-based Peptide. Journal of Biological Chemistry, 2005, 280, 16955-16961.	1.6	78
36	Monoclonal Antibody against a Peptide of Human Prion Protein Discriminates between Creutzfeldt-Jacob's Disease-affected and Normal Brain Tissue. Journal of Biological Chemistry, 2004, 279, 3694-3698.	1.6	74

#	Article	IF	CITATIONS
37	In silico fragment-based discovery of indolin-2-one analogues as potent DNA gyrase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 5207-5210.	1.0	74
38	Toll-like receptor 4 senses oxidative stress mediated by the oxidation of phospholipids in extracellular vesicles. Science Signaling, 2015, 8, ra60.	1.6	74
39	A bistable genetic switch based on designable DNA-binding domains. Nature Communications, 2014, 5, 5007.	5.8	70
40	Identification of LPS-Binding Peptide Fragment of MD-2, a Toll-Receptor Accessory Protein. Biochemical and Biophysical Research Communications, 2002, 292, 880-885.	1.0	69
41	Activation of lymphoma-associated MyD88 mutations via allostery-induced TIR-domain oligomerization. Blood, 2014, 124, 3896-3904.	0.6	69
42	A second binding site for double-stranded RNA in TLR3 and consequences for interferon activation. Nature Structural and Molecular Biology, 2008, 15, 761-763.	3.6	68
43	Cloning a synthetic gene for human stefin B and its expression inE. coli. FEBS Letters, 1988, 239, 41-44.	1.3	67
44	Accessing the global minimum conformation of stefin A dimer by annealing under partially denaturing conditions. Journal of Molecular Biology, 1999, 291, 1079-1089.	2.0	66
45	The molecular mechanism of species-specific recognition of lipopolysaccharides by the MD-2/TLR4 receptor complex. Molecular Immunology, 2015, 63, 134-142.	1.0	61
46	Modulation of Coiled-Coil Dimer Stability through Surface Residues while Preserving Pairing Specificity. Journal of the American Chemical Society, 2017, 139, 8229-8236.	6.6	61
47	The Differential Interaction of Brucella and Ochrobactrum with Innate Immunity Reveals Traits Related to the Evolution of Stealthy Pathogens. PLoS ONE, 2009, 4, e5893.	1.1	60
48	The role of the C-terminal D0 domain of flagellin in activation of Toll like receptor 5. PLoS Pathogens, 2017, 13, e1006574.	2.1	60
49	The Role of UNC93B1 Protein in Surface Localization of TLR3 Receptor and in Cell Priming to Nucleic Acid Agonists. Journal of Biological Chemistry, 2013, 288, 442-454.	1.6	57
50	Studies on Lactoferricin-derived Escherichia coli Membrane-active Peptides Reveal Differences in the Mechanism of N-Acylated Versus Nonacylated Peptides. Journal of Biological Chemistry, 2011, 286, 21266-21276.	1.6	56
51	Taxanes inhibit human TLR4 signaling by binding to MDâ€⊋. FEBS Letters, 2008, 582, 3929-3934.	1.3	55
52	Structure–Activity Relationship in Monosaccharide-Based Toll-Like Receptor 4 (TLR4) Antagonists. Journal of Medicinal Chemistry, 2018, 61, 2895-2909.	2.9	51
53	Structural Features Governing the Activity of Lactoferricin-Derived Peptides That Act in Synergy with Antibiotics against <i>Pseudomonas aeruginosa In Vitro</i> and <i>In Vivo</i> . Antimicrobial Agents and Chemotherapy, 2011, 55, 218-228.	1.4	50
54	Expression, purification and structural studies of a short antimicrobial peptide. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 314-323.	1.4	47

#	Article	IF	CITATIONS
55	Activation of Human Toll-like Receptor 4 (TLR4)·Myeloid Differentiation Factor 2 (MD-2) by Hypoacylated Lipopolysaccharide from a Clinical Isolate of Burkholderia cenocepacia. Journal of Biological Chemistry, 2015, 290, 21305-21319.	1.6	47
56	Biophysical characterization of the interaction of Limulus polyphemus endotoxin neutralizing protein with lipopolysaccharide. FEBS Journal, 2004, 271, 2037-2046.	0.2	45
57	Influence of N-acylation of a peptide derived from human lactoferricin on membrane selectivity. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1426-1435.	1.4	45
58	Conformationally Constrained Lipid A Mimetics for Exploration of Structural Basis of TLR4/MD-2 Activation by Lipopolysaccharide. ACS Chemical Biology, 2013, 8, 2423-2432.	1.6	45
59	A Synthetic Mammalian Therapeutic Gene Circuit for Sensing and Suppressing Inflammation. Molecular Therapy, 2017, 25, 102-119.	3.7	45
60	Modulation of CD14 and TLR4â‹MDâ€⊋ Activities by a Synthetic Lipid A Mimetic. ChemBioChem, 2014, 15, 250-258.	1.3	44
61	Self-assembled bionanostructures: proteins following the lead of DNA nanostructures. Journal of Nanobiotechnology, 2014, 12, 4.	4.2	44
62	Minimal Sequence Requirements for Oligodeoxyribonucleotides Activating Human TLR9. Journal of Immunology, 2015, 194, 3901-3908.	0.4	44
63	Disruption of disulfides within RBD of SARSâ€CoVâ€2 spike protein prevents fusion and represents a target for viral entry inhibition by registered drugs. FASEB Journal, 2021, 35, e21651.	0.2	44
64	Structural similarity between the hydrophobic fluorescent probe and lipid A as a ligand of MDâ€⊋. FASEB Journal, 2006, 20, 1836-1842.	0.2	43
65	The Acyl Group as the Central Element of the Structural Organization of Antimicrobial Lipopeptide. Journal of the American Chemical Society, 2007, 129, 1022-1023.	6.6	43
66	Species-Specific Minimal Sequence Motif for Oligodeoxyribonucleotides Activating Mouse TLR9. Journal of Immunology, 2015, 195, 4396-4405.	0.4	43
67	Characterization of the Equilibrium Intermediates in Acid Denaturation of Human Stefin B. FEBS Journal, 1997, 245, 364-372.	0.2	42
68	Free Thiol Group of MD-2 as the Target for Inhibition of the Lipopolysaccharide-induced Cell Activation. Journal of Biological Chemistry, 2009, 284, 19493-19500.	1.6	42
69	Production of Recombinant Antimicrobial Peptides in Bacteria. Methods in Molecular Biology, 2010, 618, 61-76.	0.4	42
70	Design principles for rapid folding of knotted DNA nanostructures. Nature Communications, 2016, 7, 10803.	5.8	42
71	Peptide and protein nanotechnology into the 2020s: beyond biology. Chemical Society Reviews, 2018, 47, 3391-3394.	18.7	42
72	In silico discovery and biophysical evaluation of novel 5-(2-hydroxybenzylidene) rhodanine inhibitors of DNA gyrase B. Bioorganic and Medicinal Chemistry, 2012, 20, 2572-2580.	1.4	41

#	Article	IF	CITATIONS
73	The primary structure of inhibitor of cysteine proteinases from potato. FEBS Letters, 1993, 333, 15-20.	1.3	40
74	Comparative analysis of selected methods for the assessment of antimicrobial and membrane-permeabilizing activity: a case study for lactoferricin derived peptides. BMC Microbiology, 2008, 8, 196.	1.3	40
75	Novel Roles of Lysines 122, 125, and 58 in Functional Differences between Human and Murine MD-2. Journal of Immunology, 2009, 183, 5138-5145.	0.4	40
76	Suppression of TLR Signaling by Targeting TIR domain-Containing Proteins. Current Protein and Peptide Science, 2012, 13, 776-788.	0.7	40
77	Production of stable isotope enriched antimicrobial peptides in Escherichia coli: an application to the production of a 15N-enriched fragment of lactoferrin. Journal of Biomolecular NMR, 2000, 18, 145-151.	1.6	39
78	Selectivity of Human TLR9 for Double CpG Motifs and Implications for the Recognition of Genomic DNA. Journal of Immunology, 2017, 198, 2093-2104.	0.4	39
79	Postulates for validating TLR4 agonists. European Journal of Immunology, 2015, 45, 356-370.	1.6	38
80	Expression of soluble versatile peroxidase of Bjerkandera adusta in Escherichia coli. Bioresource Technology, 2009, 100, 851-858.	4.8	36
81	The Ectodomain of the Toll-like Receptor 4 Prevents Constitutive Receptor Activation. Journal of Biological Chemistry, 2011, 286, 23334-23344.	1.6	36
82	Extracellular vesicle–mediated transfer of constitutively active MyD88L265P engages MyD88wt and activates signaling. Blood, 2018, 131, 1720-1729.	0.6	36
83	N-acylated Peptides Derived from Human Lactoferricin Perturb Organization of Cardiolipin and Phosphatidylethanolamine in Cell Membranes and Induce Defects in Escherichia coli Cell Division. PLoS ONE, 2014, 9, e90228.	1.1	35
84	On the mechanism of human stefin B folding: I. Comparison to homologous stefin A. Influence of pH and trifluoroethanol on the fast and slow folding phases. , 1998, 32, 296-303.		34
85	MD-2 and Der p 2 – a tale of two cousins or distant relatives?. Journal of Endotoxin Research, 2005, 11, 186-192.	2.5	34
86	Surface with antimicrobial activity obtained through silane coating with covalently bound polymyxin B. Journal of Materials Science: Materials in Medicine, 2010, 21, 2775-2782.	1.7	34
87	Short single-stranded DNA degradation products augment the activation of Toll-like receptor 9. Nature Communications, 2017, 8, 15363.	5.8	34
88	The Role of Intermediary Domain of MyD88 in Cell Activation and Therapeutic Inhibition of TLRs. Journal of Immunology, 2011, 187, 2394-2404.	0.4	33
89	Chimeric flagellin as the self-adjuvanting antigen for the activation of immune response against Helicobacter pylori. Vaccine, 2012, 30, 5856-5863.	1.7	33
90	MD-2 Determinants of Nickel and Cobalt-Mediated Activation of Human TLR4. PLoS ONE, 2015, 10, e0120583.	1.1	32

#	Article	IF	CITATIONS
91	Semiautomatic sequence-specific assignment of proteins based on the tertiary structure-The programst2nmr. Journal of Computational Chemistry, 2002, 23, 335-340.	1.5	31
92	Toll/Interleukin-1 Receptor Domain Dimers as the Platform for Activation and Enhanced Inhibition of Toll-like Receptor Signaling. Journal of Biological Chemistry, 2012, 287, 30993-31002.	1.6	28
93	Recombinant flagellins with deletions in domains D1, D2, and D3: Characterization as novel immunoadjuvants. Vaccine, 2019, 37, 652-663.	1.7	28
94	Self-assembly and regulation of protein cages from pre-organised coiled-coil modules. Nature Communications, 2021, 12, 939.	5.8	28
95	Differences in the effects of TFE on the folding pathways of human stefins A and B. , 1999, 36, 205-216.		27
96	New designed protein assemblies. Current Opinion in Chemical Biology, 2013, 17, 940-945.	2.8	27
97	Advances in design of protein folds and assemblies. Current Opinion in Chemical Biology, 2017, 40, 65-71.	2.8	27
98	Regulation of protein secretion through chemical regulation of endoplasmic reticulum retention signal cleavage. Nature Communications, 2022, 13, 1323.	5.8	26
99	Development of αGlcN(1↔1)αMan-Based Lipid A Mimetics as a Novel Class of Potent Toll-like Receptor 4 Agonists. Journal of Medicinal Chemistry, 2014, 57, 8056-8071.	2.9	25
100	Folding studies of the cysteine proteinase inhibitor — human stefin A. BBA - Proteins and Proteomics, 1991, 1078, 313-320.	2.1	24
101	Calorimetric measurements of thermal denaturation of stefins A and B. Comparison to predicted thermodynamics of stefin-B unfolding. FEBS Journal, 1992, 210, 217-221.	0.2	24
102	Novel carboxylate-based glycolipids: TLR4 antagonism, MD-2 binding and self-assembly properties. Scientific Reports, 2019, 9, 919.	1.6	24
103	Functional Activity of MD-2 Polymorphic Variant Is Significantly Different in Soluble and TLR4-Bound Forms: Decreased Endotoxin Binding by G56R MD-2 and Its Rescue by TLR4 Ectodomain. Journal of Immunology, 2008, 180, 6107-6115.	0.4	23
104	Trehalose- and Glucose-Derived Glycoamphiphiles: Small-Molecule and Nanoparticle Toll-Like Receptor 4 (TLR4) Modulators. Journal of Medicinal Chemistry, 2014, 57, 9105-9123.	2.9	23
105	Building an international consortium for tracking coronavirus health status. Nature Medicine, 2020, 26, 1161-1165.	15.2	23
106	MARCKS as a Negative Regulator of Lipopolysaccharide Signaling. Journal of Immunology, 2012, 188, 3893-3902.	0.4	22
107	Determination of the physiological 2:2 TLR5:flagellin activation stoichiometry revealed by the activity of a fusion receptor. Biochemical and Biophysical Research Communications, 2013, 435, 40-45.	1.0	22
108	Tetracysteineâ€ŧagged prion protein allows discrimination between the native and converted forms. FEBS Journal, 2010, 277, 2038-2050.	2.2	21

#	Article	IF	CITATIONS
109	Combination of Antimicrobial and Endotoxin-Neutralizing Activities of Novel Oleoylamines. Antimicrobial Agents and Chemotherapy, 2005, 49, 2307-2313.	1.4	20
110	Prevention of microvesiculation by adhesion of buds to the mother cell membrane — A possible anticoagulant effect of healthy donor plasma. Autoimmunity Reviews, 2008, 7, 240-245.	2.5	20
111	Benchmarking of TALE- and CRISPR/dCas9-Based Transcriptional Regulators in Mammalian Cells for the Construction of Synthetic Genetic Circuits. ACS Synthetic Biology, 2016, 5, 1050-1058.	1.9	20
112	CRISPRa-mediated FOXP3 gene upregulation in mammalian cells. Cell and Bioscience, 2019, 9, 93.	2.1	20
113	Synthetic biology principles for the design of protein with novel structures and functions. FEBS Letters, 2020, 594, 2199-2212.	1.3	20
114	Distinctive Recognition of Flagellin by Human and Mouse Toll-Like Receptor 5. PLoS ONE, 2016, 11, e0158894.	1.1	20
115	On the mechanism of human stefin B folding: II. Folding from GuHCl unfolded, TFE denatured, acid denatured, and acid intermediate states. , 1998, 32, 304-313.		19
116	The Ectodomain of TLR3 Receptor Is Required for Its Plasma Membrane Translocation. PLoS ONE, 2014, 9, e92391.	1.1	19
117	Coiled-coil heterodimers with increased stability for cellular regulation and sensing SARS-CoV-2 spike protein-mediated cell fusion. Scientific Reports, 2021, 11, 9136.	1.6	19
118	Topology of Folded Molecular Chains: From Single Biomolecules to Engineered Origami. Trends in Chemistry, 2020, 2, 609-622.	4.4	19
119	Structural Characterisation of Human Stefin A in Solution and Implications for Binding to Cysteine Proteinases. FEBS Journal, 1994, 225, 1181-1194.	0.2	18
120	Pathological mutations H187R and E196K facilitate subdomain separation and prion protein conversion by destabilization of the native structure. FASEB Journal, 2015, 29, 882-893.	0.2	18
121	Activation of cell membrane-localized Toll-like receptor 3 by siRNA. Immunology Letters, 2017, 189, 55-63.	1.1	18
122	A Nanoscaffolded Spike-RBD Vaccine Provides Protection against SARS-CoV-2 with Minimal Anti-Scaffold Response. Vaccines, 2021, 9, 431.	2.1	18
123	Improved Expression and Evaluation of Polyethyleneimine Precipitation in Isolation of Recombinant Cysteine Proteinase Inhibitor Stefin B. Protein Expression and Purification, 1994, 5, 65-69.	0.6	17
124	Locked and proteolysis-based transcription activator-like effector (TALE) regulation. Nucleic Acids Research, 2016, 44, 1471-1481.	6.5	17
125	SwitCCh: Metalâ€Site Design for Controlling the Assembly of a Coiledâ€Coil Homodimer. ChemBioChem, 2018, 19, 2453-2457.	1.3	17
126	Tetraacylated Lipid A and Paclitaxel-Selective Activation of TLR4/MD-2 Conferred through Hydrophobic Interactions. Journal of Immunology, 2014, 192, 1887-1895.	0.4	16

#	Article	IF	CITATIONS
127	Structural basis for the difference in thermodynamic properties between the two cysteine proteinase inhibitors human stefins A and B. Protein Engineering, Design and Selection, 1994, 7, 977-984.	1.0	15
128	Different functional role of domain boundaries of Toll-like receptor 4. Biochemical and Biophysical Research Communications, 2009, 381, 65-69.	1.0	15
129	Extension and refinement of the recognition motif for Toll-like receptor 5 activation by flagellin. Journal of Leukocyte Biology, 2018, 104, 767-776.	1.5	15
130	Synergy between 15-lipoxygenase and secreted PLA2promotes inflammation by formation of TLR4 agonists from extracellular vesicles. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25679-25689.	3.3	15
131	A guide to the design of synthetic gene networks in mammalian cells. FEBS Journal, 2021, 288, 5265-5288.	2.2	15
132	Comparison of backbone dynamics of monomeric and domain-swapped stefin A. Proteins: Structure, Function and Bioinformatics, 2004, 54, 500-512.	1.5	14
133	<scp>TOPOFOLD</scp> , the designed modular biomolecular folds: polypeptideâ€based molecular origami nanostructures following the footsteps of <scp>DNA</scp> . Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 218-237.	3.3	14
134	Synthetic Biology for Multiscale Designed Biomimetic Assemblies: From Designed Self-Assembling Biopolymers to Bacterial Bioprinting. Biochemistry, 2019, 58, 2095-2104.	1.2	14
135	Designed folding pathway of modular coiled-coil-based proteins. Nature Communications, 2021, 12, 940.	5.8	14
136	A nanobody toolbox targeting dimeric coiled-coil modules for functionalization of designed protein origami structures. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
137	Elongation on the Amino-terminal Part of Stefin B Decreases Inhibition of Cathepsin H. FEBS Journal, 1994, 224, 797-802.	0.2	13
138	Glycolipidâ€based <scp>TLR</scp> 4 Modulators and Fluorescent Probes: Rational Design, Synthesis, and Biological Properties. Chemical Biology and Drug Design, 2016, 88, 217-229.	1.5	13
139	Phosphodiester backbone of the CpG motif within immunostimulatory oligodeoxynucleotides augments activation of Toll-like receptor 9. Scientific Reports, 2017, 7, 14598.	1.6	13
140	Design of split superantigen fusion proteins for cancer immunotherapy. Journal of Biological Chemistry, 2019, 294, 6294-6305.	1.6	13
141	Designed protease-based signaling networks. Current Opinion in Chemical Biology, 2022, 68, 102146.	2.8	13
142	Functional self-assembling polypeptide bionanomaterials. Biochemical Society Transactions, 2012, 40, 629-634.	1.6	12
143	Interactions of Archaeal Chromatin Proteins Alba1 and Alba2 with Nucleic Acids. PLoS ONE, 2013, 8, e58237.	1.1	12
144	Monoclonal antibodies to human stefin B and determination of their epitopes. BBA - Proteins and Proteomics, 1993, 1164, 75-80.	2.1	11

#	Article	IF	CITATIONS
145	Introduction of glutamines into the B2–H2 loop promotes prion protein conversion. Biochemical and Biophysical Research Communications, 2011, 413, 521-526.	1.0	11
146	Disulfide mapping reveals the domain swapping as the crucial process of the structural conversion of prion protein. Prion, 2011, 5, 56-59.	0.9	11
147	Engineering and Rewiring of a Calcium-Dependent Signaling Pathway. ACS Synthetic Biology, 2020, 9, 2055-2065.	1.9	11
148	Triangular <i>in Vivo</i> Self-Assembling Coiled-Coil Protein Origami. ACS Chemical Biology, 2021, 16, 310-315.	1.6	11
149	Metal ion–regulated assembly of designed modular protein cages. Science Advances, 2022, 8, .	4.7	11
150	Compactness of the molten globule in comparison to unfolded states as observed by size-exclusion chromatography. BBA - Proteins and Proteomics, 1994, 1209, 140-143.	2.1	10
151	A 3D 1H, 15N, and 13C NOESY Correlating Experiment. Journal of Magnetic Resonance Series B, 1995, 108, 294-298.	1.6	10
152	Protein inhibitors form complexes with procathepsin L and augment cleavage of the propeptide. Archives of Biochemistry and Biophysics, 2003, 417, 53-58.	1.4	10
153	Molecular Basis of the Functional Differences between Soluble Human Versus Murine MD-2: Role of Val135 in Transfer of Lipopolysaccharide from CD14 to MD-2. Journal of Immunology, 2016, 196, 2309-2318.	0.4	10
154	Molecular assemblies built with the artificial protein Pizza. Journal of Structural Biology: X, 2020, 4, 100027.	0.7	10
155	Denaturation of Stefin B by GuHCl, pH and Heat; Evidence for Molten Globule Intermediates. Biological Chemistry Hoppe-Seyler, 1992, 373, 453-458.	1.4	9
156	Major differences in stability and dimerization properties of two chimeric mutants of human stefins. Proteins: Structure, Function and Bioinformatics, 2001, 42, 512-522.	1.5	9
157	Effective Antimicrobial and Anti-Endotoxin Activity of Cationic Peptides Based on Lactoferricin: A Biophysical and Microbiological Study. Anti-Infective Agents in Medicinal Chemistry, 2010, 9, 9-22.	0.6	9
158	Recognition of Nucleic Acids by Toll-Like Receptors and Development of Immunomodulatory Drugs. Current Medicinal Chemistry, 2010, 17, 1899-1914.	1.2	9
159	Polarized displacement by transcription activator-like effectors for regulatory circuits. Nature Chemical Biology, 2019, 15, 80-87.	3.9	9
160	Design of novel protein building modules and modular architectures. Current Opinion in Structural Biology, 2020, 63, 90-96.	2.6	9
161	Metabolic enzyme clustering by coiled coils improves the biosynthesis of resveratrol and mevalonate. AMB Express, 2020, 10, 97.	1.4	9
162	The Relevance of Physico-Chemical Properties and Protein Corona for Evaluation of Nanoparticles Immunotoxicity—In Vitro Correlation Analysis on THP-1 Macrophages. International Journal of Molecular Sciences, 2022, 23, 6197.	1.8	9

#	Article	IF	CITATIONS
163	Expression and Refolding of Functional Fragments of the Human Lipopolysaccharide Receptor CD14 in Escherichia coli and Pichia pastoris. Protein Expression and Purification, 1999, 17, 96-104.	0.6	8
164	Noninvasive High-Throughput Single-Cell Analysis of HIV Protease Activity Using Ratiometric Flow Cytometry. Sensors, 2013, 13, 16330-16346.	2.1	8
165	Species-Specific Activation of TLR4 by Hypoacylated Endotoxins Governed by Residues 82 and 122 of MD-2. PLoS ONE, 2014, 9, e107520.	1.1	8
166	Coiled-coil forming peptides for the induction of silver nanoparticles. Biochemical and Biophysical Research Communications, 2016, 472, 566-571.	1.0	8
167	Tailored Modulation of Cellular Pro-inflammatory Responses With Disaccharide Lipid A Mimetics. Frontiers in Immunology, 2021, 12, 631797.	2.2	8
168	Novel Regeneration Approach for Creating Reusable FO-SPR Probes with NTA Surface Chemistry. Nanomaterials, 2021, 11, 186.	1.9	8
169	Coiled-coil heterodimer-based recruitment of an exonuclease to CRISPR/Cas for enhanced gene editing. Nature Communications, 2022, 13, .	5.8	8
170	Effect of Hydrophobic Mutations in the H2-H3 Subdomain of Prion Protein on Stability and Conversion In Vitro and In Vivo. PLoS ONE, 2011, 6, e24238.	1.1	7
171	Interaction of the HIV-1 gp120 Viral Protein V3 Loop with Bacterial Lipopolysaccharide. Journal of Biological Chemistry, 2011, 286, 26228-26237.	1.6	7
172	On three genetic repressilator topologies. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 3-30.	0.8	7
173	Vanadate from Air Pollutant Inhibits Hrs-Dependent Endosome Fusion and Augments Responsiveness to Toll-Like Receptors. PLoS ONE, 2014, 9, e99287.	1.1	6
174	Delivery system for the enhanced efficiency of immunostimulatory nucleic acids. Innate Immunity, 2013, 19, 53-65.	1.1	5
175	Designed Protein Origami. Advances in Experimental Medicine and Biology, 2016, 940, 7-27.	0.8	5
176	Transcription activator-like effector-mediated regulation of gene expression based on the inducible packaging and delivery via designed extracellular vesicles. Biochemical and Biophysical Research Communications, 2017, 484, 15-20.	1.0	5
177	The NLRP3 inhibitor MCC950 inhibits IL-1β production in PBMC from 19 patients with Cryopyrin-Associated Periodic Syndrome and in 2 patients with Schnitzler's Syndrome. Wellcome Open Research, 0, 5, 247.	0.9	5
178	Engineered human cells: say no to sepsis. IET Synthetic Biology, 2007, 1, 13-16.	0.2	4
179	Towards designing new nano-scale protein architectures. Essays in Biochemistry, 2016, 60, 315-324.	2.1	4
180	Regen: program for designing gene assembly. Nucleic Acids Research, 1988, 16, 1759-1766.	6.5	3

#	Article	IF	CITATIONS
181	Mutational Analysis of Two Stefin A Epitopes. Biological Chemistry, 1999, 380, 723-6.	1.2	3
182	Function-Based Mutation-Resistant Synthetic Signaling Device Activated by HIV-1 Proteolysis. ACS Synthetic Biology, 2015, 4, 667-672.	1.9	3
183	Designed Transcriptional Regulation in Mammalian Cells Based on TALE- and CRISPR/dCas9. Methods in Molecular Biology, 2018, 1772, 191-203.	0.4	3
184	Design and applications of synthetic information processing circuits in mammalian cells. Synthetic Biology, 0, , 1-34.	0.2	3
185	Cleavage-Mediated Regulation of Myd88 Signaling by Inflammasome-Activated Caspase-1. Frontiers in Immunology, 2021, 12, 790258.	2.2	3
186	Binding of the transcription activator-like effector augments transcriptional regulation by another transcription factor. Nucleic Acids Research, 2022, 50, 6562-6574.	6.5	3
187	The role of N-terminal segment and membrane association in MyD88-mediated signaling. Biochemical and Biophysical Research Communications, 2018, 495, 878-883.	1.0	2
188	Increased gene translation stringency in mammalian cells by nonsense suppression at multiple permissive sites with a single noncanonical amino acid. FEBS Letters, 2020, 594, 2452-2461.	1.3	2
189	On the Origin and Features of an Evolved Boolean Model for Subcellular Signal Transduction Systems. Lecture Notes in Computer Science, 2011, , 383-392.	1.0	2
190	Proteolytically Activated CRAC Effectors through Designed Intramolecular Inhibition. ACS Synthetic Biology, 2022, 11, 2756-2765.	1.9	2
191	Bacterial expression and refolding of different fragments of human CD14. Pflugers Archiv European Journal of Physiology, 2000, 439, r109-r110.	1.3	1
192	Preparation of chimeric genes without subcloning. BioTechniques, 2004, 37, 726-730.	0.8	1
193	TERTIARY STRUCTURE OF LACTOFERRIN PEPTIDE IN COMPLEX WITH LPS FOR DESIGN OF NOVEL ENDOTOXIN-NEUTRALIZING PEPTIDES. Shock, 2004, 21, 62.	1.0	1
194	Conformation and Fluctuations of free Stefin B: A Molecular Dynamics Study. Biological Chemistry Hoppe-Seyler, 1992, 373, 447-452.	1.4	0
195	Response to Apostol and Surewicz: Structural Underpinnings of Prion Protein Conversion. Journal of Biological Chemistry, 2011, 286, le8.	1.6	Ο