Daniel Proga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5428231/publications.pdf

Version: 2024-02-01

71651 66315 6,404 129 42 76 citations h-index g-index papers 129 129 129 3368 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dynamics of Lineâ€driven Disk Winds in Active Galactic Nuclei. Astrophysical Journal, 2000, 543, 686-696.	1.6	685
2	Dynamics of Lineâ€driven Disk Winds in Active Galactic Nuclei. II. Effects of Disk Radiation. Astrophysical Journal, 2004, 616, 688-695.	1.6	413
3	DISCERNING THE PHYSICAL ORIGINS OF COSMOLOGICAL GAMMA-RAY BURSTS BASED ON MULTIPLE OBSERVATIONAL CRITERIA: THE CASES OF <i>>z < /i> = 6.7 GRB 080913, <i>z < /i> = 8.2 GRB 090423, AND SOME SHORT/HARD GRBs. Astrophysical Journal, 2009, 703, 1696-1724.</i></i>	1.6	307
4	MOMENTUM DRIVING: WHICH PHYSICAL PROCESSES DOMINATE ACTIVE GALACTIC NUCLEUS FEEDBACK?. Astrophysical Journal, 2010, 722, 642-652.	1.6	227
5	FEEDBACK FROM CENTRAL BLACK HOLES IN ELLIPTICAL GALAXIES. III. MODELS WITH BOTH RADIATIVE AND MECHANICAL FEEDBACK. Astrophysical Journal, 2010, 717, 708-723.	1.6	212
6	Radiation-driven winds from luminous accretion discs. Monthly Notices of the Royal Astronomical Society, 1998, 295, 595-617.	1.6	168
7	The late time evolution of gamma-ray bursts: ending hyperaccretion and producing flares. Monthly Notices of the Royal Astronomical Society: Letters, 2006, 370, L61-L65.	1.2	152
8	Numerical Simulations of Mass Outflows Driven from Accretion Disks by Radiation and Magnetic Forces. Astrophysical Journal, 2003, 585, 406-417.	1.6	143
9	Accretion of Low Angular Momentum Material onto Black Holes: Twoâ€dimensional Magnetohydrodynamic Case. Astrophysical Journal, 2003, 592, 767-781.	1.6	142
10	Axisymmetric Magnetohydrodynamic Simulations of the Collapsar Model for Gamma-Ray Bursts. Astrophysical Journal, 2003, 599, L5-L8.	1.6	127
11	FEEDBACK FROM CENTRAL BLACK HOLES IN ELLIPTICAL GALAXIES. I. MODELS WITH EITHER RADIATIVE OR MECHANICAL FEEDBACK BUT NOT BOTH. Astrophysical Journal, 2009, 699, 89-104.	1.6	127
12	On the Role of the Ultraviolet and Xâ€Ray Radiation in Driving a Disk Wind in Xâ€Ray Binaries. Astrophysical Journal, 2002, 565, 455-470.	1.6	113
13	Dynamics of Accretion Flows Irradiated by a Quasar. Astrophysical Journal, 2007, 661, 693-702.	1.6	110
14	Multidimensional modelling of X-ray spectra for AGN accretion disc outflows - III. Application to a hydrodynamical simulation. Monthly Notices of the Royal Astronomical Society, 2010, 408, 1396-1408.	1.6	107
15	Accretion of Low Angular Momentum Material onto Black Holes: Twoâ€dimensional Hydrodynamical Inviscid Case. Astrophysical Journal, 2003, 582, 69-81.	1.6	106
16	LINE-DRIVEN DISK WINDS IN ACTIVE GALACTIC NUCLEI: THE CRITICAL IMPORTANCE OF IONIZATION AND RADIATIVE TRANSFER. Astrophysical Journal, 2014, 789, 19.	1.6	101
17	A global view of the inner accretion and ejection flow around super massive black holes. Astronomy and Astrophysics, 2019, 630, A94.	2.1	91
18	lonized outflows from active galactic nuclei as the essential elements of feedback. Nature Astronomy, 2021, 5, 13-24.	4.2	88

#	Article	IF	CITATIONS
19	Xâ€Ray/Ultraviolet Campaign on the Mrk 279 AGN Outflow: Constraining Inhomogeneous Absorber Models. Astrophysical Journal, 2005, 620, 665-672.	1.6	79
20	Linearly Polarized X-Ray Flares following Short Gamma-Ray Bursts. Astrophysical Journal, 2005, 635, L129-L132.	1.6	77
21	X-ray/ultraviolet observing campaign of the Markarian 279 active galactic nucleus outflow: a close look at the absorbing/emitting gas with Chandra-LETGS. Astronomy and Astrophysics, 2007, 461, 121-134.	2.1	75
22	ANISOTROPIC WINDS FROM CLOSE-IN EXTRASOLAR PLANETS. Astrophysical Journal, 2009, 694, 205-213.	1.6	73
23	POWERFUL, ROTATING DISK WINDS FROM STELLAR-MASS BLACK HOLES. Astrophysical Journal, 2015, 814, 87.	1.6	70
24	Chemical Abundances in an AGN Environment: Xâ€Ray/UV Campaign on the Markarian 279 Outflow. Astrophysical Journal, 2007, 658, 829-839.	1.6	69
25	Winds from Accretion Disks Driven by Radiation and Magnetocentrifugal Force. Astrophysical Journal, 2000, 538, 684-690.	1.6	68
26	REGULATION OF BLACK HOLE WINDS AND JETS ACROSS THE MASS SCALE. Astrophysical Journal, 2013, 762, 103.	1.6	64
27	ON THE PROPERTIES OF THERMAL DISK WINDS IN X-RAY TRANSIENT SOURCES: A CASE STUDY OF GRO J1655–40. Astrophysical Journal, 2010, 719, 515-522.	1.6	63
28	Dynamics of Rotating Accretion Flows Irradiated by a Quasar. Astrophysical Journal, 2008, 676, 101-112.	1.6	62
29	THE IMPACT OF ACCRETION DISK WINDS ON THE X-RAY SPECTRA OF ACTIVE GALACTIC NUCLEI. II. XSCORT + HYDRODYNAMIC SIMULATIONS. Astrophysical Journal, 2009, 694, 1-11.	1.6	61
30	On the large-scale outflows in active galactic nuclei: consequences of coupling the mass supply rate and accretion luminosity. Monthly Notices of the Royal Astronomical Society, 2009, 397, 1791-1803.	1.6	60
31	Line-driven disc wind models with an improved line force. Monthly Notices of the Royal Astronomical Society, 1999, 310, 476-482.	1.6	57
32	THREE-DIMENSIONAL SIMULATIONS OF DYNAMICS OF ACCRETION FLOWS IRRADIATED BY A QUASAR. Astrophysical Journal, 2009, 693, 1929-1945.	1.6	53
33	How Much X-Ray and UV Radiation Processes Are Coupled in Accretion Disks? The Active Galactic Nucleus Case. Astrophysical Journal, 2005, 630, L9-L12.	1.6	52
34	THE ACCRETION DISK WIND IN THE BLACK HOLE GRS 1915+105. Astrophysical Journal Letters, 2016, 821, L9.	3.0	52
35	Xâ€Ray/Ultraviolet Observing Campaign of the Markarian 279 Active Galactic Nucleus Outflow: A Globalâ€Fitting Analysis of the Ultraviolet Absorption. Astrophysical Journal, 2005, 623, 85-98.	1.6	51
36	Multiphase, non-spherical gas accretion on to a black hole. Monthly Notices of the Royal Astronomical Society, 2012, 424, 728-746.	1.6	49

#	Article	lF	Citations
37	AGN STORM 2. I. First results: A Change in the Weather of Mrk 817. Astrophysical Journal, 2021, 922, 151.	1.6	49
38	The evolved B[e] star HD 87643: observations and a radiation-driven disc wind model for B[e] stars. Monthly Notices of the Royal Astronomical Society, 1998, 300, 170-182.	1.6	48
39	XMM-NewtonandChandraSpectroscopy of the Variable High-Energy Absorption of PG 1115+080: Refined Outflow Constraints. Astronomical Journal, 2007, 133, 1849-1860.	1.9	48
40	CORONAE AND WINDS FROM IRRADIATED DISKS IN X-RAY BINARIES. Astrophysical Journal, 2015, 807, 107.	1.6	47
41	Variable X-ray absorption in the mini-BAL QSO PGÂ1126-041. Astronomy and Astrophysics, 2011, 536, A49.	2.1	44
42	A radiation-driven disc wind model for massive young stellar objects. Monthly Notices of the Royal Astronomical Society, 1998, 296, L6-L10.	1.6	44
43	X-ray/UV campaign on the MrkÂ279 outflow: Density diagnostics in Active Galactic Nuclei using O v K-shell absorption lines. Astronomy and Astrophysics, 2004, 428, 57-66.	2.1	41
44	ON THE FEEDBACK EFFICIENCY OF ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2009, 707, 823-832.	1.6	39
45	Non-isobaric Thermal Instability. Astrophysical Journal, 2019, 875, 158.	1.6	38
46	Testing the line-driven disc wind model: time-resolved ultraviolet spectroscopy of IX Vel and V3885 Sgr. Monthly Notices of the Royal Astronomical Society, 2002, 332, 127-143.	1.6	37
47	An Axisymmetric, Hydrodynamical Model for the Torus Wind in Active Galactic Nuclei. II. Xâ€Ray–Excited Funnel Flow. Astrophysical Journal, 2008, 687, 97-110.	1.6	36
48	Space Telescope and Optical Reverberation Mapping Project. IX. Velocity–Delay Maps for Broad Emission Lines in NGC 5548. Astrophysical Journal, 2021, 907, 76.	1.6	36
49	CLOUD FORMATION AND ACCELERATION IN A RADIATIVE ENVIRONMENT. Astrophysical Journal, 2015, 804, 137.	1.6	35
50	The black holes of radio galaxies during the "Quasar Era― masses, accretion rates, and evolutionary stage. Astronomy and Astrophysics, 2011, 525, A43.	2.1	34
51	Space Telescope and Optical Reverberation Mapping Project. VIII. Time Variability of Emission and Absorption in NGC 5548 Based on Modeling the Ultraviolet Spectrum. Astrophysical Journal, 2019, 881, 153.	1.6	34
52	He I emission lines in symbiotic stars. Monthly Notices of the Royal Astronomical Society, 1994, 268, 213-228.	1.6	33
53	C IV EMISSION AND THE ULTRAVIOLET THROUGH X-RAY SPECTRAL ENERGY DISTRIBUTION OF RADIO-QUIET QUASARS. Astronomical Journal, 2011, 142, 130.	1.9	33
54	ON THE DIVERSITY AND COMPLEXITY OF ABSORPTION LINE PROFILES PRODUCED BY OUTFLOWS IN ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2012, 758, 70.	1.6	33

#	Article	IF	Citations
55	Irradiation of astrophysical objects $\hat{a}\in$ SED and flux effects on thermally driven winds. Monthly Notices of the Royal Astronomical Society, 2017, 467, 4161-4173.	1.6	33
56	Radiation-driven accretion disk winds. New Astronomy Reviews, 2000, 44, 21-26.	5.2	32
57	Low Angular Momentum Accretion in the Collapsar: How Long Can a Long GRB Be?. Astrophysical Journal, 2008, 675, 519-527.	1.6	32
58	PARSEC-SCALE ACCRETION AND WINDS IRRADIATED BY A QUASAR. Astrophysical Journal, 2016, 819, 115.	1.6	32
59	An Axisymmetric, Hydrodynamical Model for the Torus Wind in Active Galactic Nuclei. Astrophysical Journal, 2008, 675, L5-L8.	1.6	30
60	Smoothed particle hydrodynamics simulations of black hole accretion: a step to model black hole feedback in galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 418, 591-611.	1.6	30
61	FUSEObservations of U Geminorum during Outburst and Decline. Astrophysical Journal, 2001, 562, 963-984.	1.6	30
62	On Magnetohydrodynamic Jet Production in the Collapsing and Rotating Envelope. Astrophysical Journal, 2005, 629, 397-402.	1.6	29
63	THERMAL AND DYNAMICAL PROPERTIES OF GAS ACCRETING ONTO A SUPERMASSIVE BLACK HOLE IN AN ACTIVE GALACTIC NUCLEUS. Astrophysical Journal, 2013, 767, 156.	1.6	29
64	Thermal Disk Winds in X-Ray Binaries: Realistic Heating and Cooling Rates Give Rise to Slow, but Massive, Outflows. Astrophysical Journal, 2017, 836, 42.	1.6	29
65	The Hot Component of RS Ophiuchi. Astronomical Journal, 1996, 111, 2090.	1.9	29
66	An Obscured, Seyfert 2–like State of the Stellar-mass Black Hole GRS 1915+105 Caused by Failed Disk Winds. Astrophysical Journal, 2020, 904, 30.	1.6	29
67	On Resonance-Line Profiles Predicted by Radiation-driven Disk-Wind Models. Astrophysical Journal, 2003, 592, L9-L12.	1.6	28
68	Comparison of theoretical radiation-driven winds from stars and discs. Monthly Notices of the Royal Astronomical Society, 1999, 304, 938-946.	1.6	27
69	THE EFFECTS OF IRRADIATION ON CLOUD EVOLUTION IN ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2014, 780, 51.	1.6	27
70	Threeâ€dimensional Simulations of Inflows Irradiated by a Precessing Accretion Disk in Active Galactic Nuclei: Formation of Outflows. Astrophysical Journal, 2008, 674, 97-110.	1.6	26
71	Resonance Line Profile Calculations Based on Hydrodynamical Models of Cataclysmic Variable Winds. Astrophysical Journal, 2002, 572, 382-391.	1.6	25
72	REVERBERATION MAPPING OF THE BROAD LINE REGION: APPLICATION TO A HYDRODYNAMICAL LINE-DRIVEN DISK WIND SOLUTION. Astrophysical Journal, 2016, 827, 53.	1.6	25

#	Article	IF	CITATIONS
7 3	DISK–WIND CONNECTION DURING THE HEARTBEATS OF GRS 1915+105. Astrophysical Journal, 2016, 833, 165	5.1.6	24
74	Illumination in Symbiotic Binary Stars: Non‣TE Photoionization Models. I. Hydrostatic Case. Astrophysical Journal, 1996, 471, 930-948.	1.6	24
75	Photoionization Calculations of the Radiation Force Due To Spectral Lines in AGNs. Astrophysical Journal, 2019, 882, 99.	1.6	23
76	Clumpy AGN Outflows due to Thermal Instability. Astrophysical Journal Letters, 2020, 893, L34.	3.0	23
77	Multiphase AGN Winds from X-Ray-irradiated Disk Atmospheres. Astrophysical Journal, 2021, 914, 62.	1.6	22
78	Space Telescope and Optical Reverberation Mapping Project. XII. Broad-line Region Modeling of NGC 5548. Astrophysical Journal, 2020, 902, 74.	1.6	22
79	Parker winds revisited: an extension to disc winds. Monthly Notices of the Royal Astronomical Society, 2012, 426, 2239-2265.	1.6	21
80	On the efficient acceleration of clouds in active galactic nuclei. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 460, L79-L83.	1.2	21
81	TIME EVOLUTION OF THE THREE-DIMENSIONAL ACCRETION FLOWS: EFFECTS OF THE ADIABATIC INDEX AND OUTER BOUNDARY CONDITION. Astrophysical Journal, 2009, 705, 1503-1521.	1.6	20
82	Synthetic X-ray spectra for simulations of the dynamics of an accretion flow irradiated by a quasar. Monthly Notices of the Royal Astronomical Society, 2012, 426, 2859-2869.	1.6	20
83	ON THE VIRIALIZATION OF DISK WINDS: IMPLICATIONS FOR THE BLACK HOLE MASS ESTIMATES IN ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2013, 778, 50.	1.6	20
84	⟨i⟩CHANDRASPECTROSCOPY OF MAXIJ1305–704: DETECTION OF AN INFALLING BLACK HOLE DISK WIND Astrophysical Journal, 2014, 788, 53.	?.1.6	20
85	On the Duration of Long GRBs: Effects of Black Hole Spin. Astrophysical Journal, 2008, 687, 433-442.	1.6	19
86	Magnetothermal disc winds in X-ray binaries: poloidal magnetic fields suppress thermal winds. Monthly Notices of the Royal Astronomical Society, 0 , , .	1.6	19
87	A Comprehensive Chandra Study of the Disk Wind in the Black Hole Candidate 4U 1630-472. Astrophysical Journal, 2019, 886, 104.	1.6	18
88	Nonaxisymmetric Effects in Black Hole Accretion Inviscid Hydrodynamics: Formation and Evolution of a Tilted Torus. Astrophysical Journal, 2008, 681, 58-72.	1.6	17
89	Cloud Coalescence: A Dynamical Instability Affecting Multiphase Environments. Astrophysical Journal Letters, 2019, 876, L3.	3.0	17
90	Synthetic absorption lines for a clumpy medium: a spectral signature for cloud acceleration in AGN?. Monthly Notices of the Royal Astronomical Society, 0, , stx238.	1.6	16

#	Article	IF	Citations
91	The Continuing Slow Decline of AG Pegasi. Astronomical Journal, 2001, 122, 349-359.	1.9	16
92	Illumination in Symbiotic Binary Stars: Non‣TE Photoionization Models. II. Wind Case. Astrophysical Journal, 1998, 501, 339-356.	1.6	15
93	Accretion of low angular momentum material onto black holes: radiation properties of axisymmetric MHDÂflows. Astronomy and Astrophysics, 2007, 474, 1-13.	2.1	15
94	Non-axisymmetric line-driven disc winds II - full velocity gradient. Monthly Notices of the Royal Astronomical Society, 2018, 478, 5006-5016.	1.6	15
95	A Hard Look at Local, Optically Selected, Obscured Seyfert Galaxies*. Astrophysical Journal, 2020, 901, 161.	1.6	15
96	Non-axisymmetric line-driven disc winds $\hat{a} \in \mathbb{C}$ I. Disc perturbations. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3786-3796.	1.6	14
97	Time Variability of Accretion Flows: Effects of the Adiabatic Index and Gas Temperature. Astrophysical Journal, 2008, 679, 626-638.	1.6	13
98	Direct probe of the inner accretion flow around the supermassive black hole in NGC 2617. Astronomy and Astrophysics, 2017, 597, A66.	2.1	13
99	A Hard Look at NGC 5347: Revealing a Nearby Compton-thick AGN. Astrophysical Journal, 2019, 877, 102.	1.6	13
100	Space Telescope and Optical Reverberation Mapping Project. XI. Disk-wind Characteristics and Contributions to the Very Broad Emission Lines of NGC 5548. Astrophysical Journal, 2020, 898, 141.	1.6	13
101	Helium absorption and emission towards Â1 Ori C. Monthly Notices of the Royal Astronomical Society, 1997, 291, 110-120.	1.6	11
102	PHOTOIONIZED FEATURES IN THE X-RAY SPECTRUM OF EX HYDRAE. Astrophysical Journal, 2010, 711, 1333-1337.	1.6	11
103	Outflows from inflows: the nature of Bondi-like accretion. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 491, L76-L80.	1.2	11
104	Magnetized accretion flows: effects of gas pressure. Monthly Notices of the Royal Astronomical Society, 2009, 397, 2087-2098.	1.6	10
105	Time-dependent radiation-driven winds. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5263-5269.	1.6	10
106	Dynamical Thermal Instability in Highly Supersonic Outflows. Astrophysical Journal, 2022, 931, 134.	1.6	10
107	A Redshifted Inner Disk Atmosphere and Transient Absorbers in the Ultracompact Neutron Star X-Ray Binary 4U 1916–053. Astrophysical Journal Letters, 2020, 899, L16.	3.0	7
108	Hubble Space TelescopeUltraviolet Spectroscopy of 14 Low-Redshift Quasars. Astronomical Journal, 2007, 133, 479-486.	1.9	6

#	Article	IF	CITATIONS
109	On Synthetic Absorption Line Profiles of Thermally Driven Winds from Active Galactic Nuclei. Astrophysical Journal, 2021, 914, 114.	1.6	6
110	Effects of radiation field geometry on line driven disc winds. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2745-2753.	1.6	5
111	Effects of opacity temperature dependence on radiatively accelerated clouds. Monthly Notices of the Royal Astronomical Society, 2020, 493, 437-445.	1.6	4
112	On the Wind-driven Relaxation Cycle in Accretion Disks. Astrophysical Journal, 2020, 890, 54.	1.6	4
113	The role of failed accretion disk winds in active galactic nuclei. Proceedings of the International Astronomical Union, 2019, 15, 82-86.	0.0	3
114	Swift Spectroscopy of the Accretion Disk Wind in the Black Hole GRO J1655–40. Astrophysical Journal, 2020, 893, 155.	1.6	3
115	Radiation driven winds from CV accretion disks. International Astronomical Union Colloquium, 1997, 163, 782-782.	0.1	2
116	Line-driven disk winds in active galactic nuclei. Advances in Space Research, 2001, 28, 459-461.	1.2	2
117	Time Variability of Low Angular Momentum Flows Accreting onto Black Holes: A Natural Mechanism for Radiation Flaring., 0,, 284-289.		2
118	Quiet is the new loud. Nature, 2009, 458, 414-415.	13.7	2
119	Magnetic accretion. Nature, 2006, 441, 938-938.	13.7	1
119	Magnetic accretion. Nature, 2006, 441, 938-938. A Spectroscopic Angle on Central Engine Size Scales in Accreting Neutron Stars. Astrophysical Journal, 2022, 925, 113.	13.7	1
	A Spectroscopic Angle on Central Engine Size Scales in Accreting Neutron Stars. Astrophysical		
120	A Spectroscopic Angle on Central Engine Size Scales in Accreting Neutron Stars. Astrophysical Journal, 2022, 925, 113.	1.6	1
120	A Spectroscopic Angle on Central Engine Size Scales in Accreting Neutron Stars. Astrophysical Journal, 2022, 925, 113. Radiation-Driven Disk Winds. International Astronomical Union Colloquium, 1999, 169, 140-143.	1.6	0
120 121 122	A Spectroscopic Angle on Central Engine Size Scales in Accreting Neutron Stars. Astrophysical Journal, 2022, 925, 113. Radiation-Driven Disk Winds. International Astronomical Union Colloquium, 1999, 169, 140-143. Radiation-driven disk winds., 1999,, 140-143. Radiation spectra from MHD simulations of low angular momentum flows. Proceedings of the	1.6 0.1	1 0 0
120 121 122 123	A Spectroscopic Angle on Central Engine Size Scales in Accreting Neutron Stars. Astrophysical Journal, 2022, 925, 113. Radiation-Driven Disk Winds. International Astronomical Union Colloquium, 1999, 169, 140-143. Radiation-driven disk winds., 1999,, 140-143. Radiation spectra from MHD simulations of low angular momentum flows. Proceedings of the International Astronomical Union, 2006, 2, 411-412. Dynamics of radiatively inefficient flows accreting onto radiatively efficient black hole objects.	0.1	1 0 0

DANIEL PROGA

#	Article	IF	CITATIONS
127	Radiation-Driven Outflows in Active Galactic Nuclei. , 2009, , .		0
128	Models of Quasars. Astrophysics and Space Science Library, 2012, , 337-437.	1.0	0
129	Quasars in the Cosmic Environment. Astrophysics and Space Science Library, 2012, , 439-520.	1.0	O