Jun Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5428223/publications.pdf

Version: 2024-02-01

393982 360668 1,384 35 47 19 citations h-index g-index papers 1106 47 47 47 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tracking a system of shared autonomous vehicles across the Austin, Texas network using agent-based simulation. Transportation, 2017, 44, 1261-1278.	2.1	154
2	Shared autonomous electric vehicle (SAEV) operations across the Austin, Texas network with charging infrastructure decisions. Transportation Research Part C: Emerging Technologies, 2018, 89, 222-233.	3.9	150
3	Delivering improved alerts, warnings, and control assistance using basic safety messages transmitted between connected vehicles. Transportation Research Part C: Emerging Technologies, 2016, 68, 83-100.	3.9	86
4	What is the level of volatility in instantaneous driving decisions?. Transportation Research Part C: Emerging Technologies, 2015, 58, 413-427.	3.9	80
5	Pedestrian injury severity in motor vehicle crashes: An integrated spatio-temporal modeling approach. Accident Analysis and Prevention, 2019, 132, 105272.	3.0	64
6	What are the differences in driver injury outcomes at highway-rail grade crossings? Untangling the role of pre-crash behaviors. Accident Analysis and Prevention, 2015, 85, 157-169.	3.0	59
7	Do safety performance functions used for predicting crash frequency vary across space? Applying geographically weighted regressions to account for spatial heterogeneity. Accident Analysis and Prevention, 2017, 109, 132-142.	3.0	55
8	Modeling Traffic Incident Duration Using Quantile Regression. Transportation Research Record, 2016, 2554, 139-148.	1.0	51
9	Non-crossing rail-trespassing crashes in the past decade: A spatial approach to analyzing injury severity. Safety Science, 2016, 82, 44-55.	2.6	45
10	Gate-violation behavior at highway-rail grade crossings and the consequences: Using geo-Spatial modeling integrated with path analysis. Accident Analysis and Prevention, 2017, 109, 99-112.	3.0	45
11	Customizing driving cycles to support vehicle purchase and use decisions: Fuel economy estimation for alternative fuel vehicle users. Transportation Research Part C: Emerging Technologies, 2016, 67, 280-298.	3.9	40
12	Bicyclist injury severity in traffic crashes: A spatial approach for geo-referenced crash data to uncover non-stationary correlates. Journal of Safety Research, 2020, 73, 25-35.	1.7	40
13	The role of alternative fuel vehicles: Using behavioral and sensor data to model hierarchies in travel. Transportation Research Part C: Emerging Technologies, 2015, 55, 379-392.	3.9	35
14	Fuel consumption for various driving styles in conventional and hybrid electric vehicles: Integrating driving cycle predictions with fuel consumption optimization. International Journal of Sustainable Transportation, 2019, 13, 123-137.	2.1	32
15	A spatiotemporal analysis of motorcyclist injury severity: Findings from 20 years of crash data from Pennsylvania. Accident Analysis and Prevention, 2021, 151, 105952.	3.0	31
16	A comparative study of rail-pedestrian trespassing crash injury severity between highway-rail grade crossings and non-crossings. Accident Analysis and Prevention, 2018, 117, 427-438.	3.0	30
17	What is the evidence concerning the gap between on-road and Environmental Protection Agency fuel economy ratings?. Transport Policy, 2017, 53, 146-160.	3.4	28
18	A comparative study of driving performance in metropolitan regions using large-scale vehicle trajectory data: Implications for sustainable cities. International Journal of Sustainable Transportation, 2017, 11, 170-185.	2.1	26

#	Article	IF	CITATIONS
19	A spatial analysis of the ownership of alternative fuel and hybrid vehicles. Transportation Research, Part D: Transport and Environment, 2019, 77, 106-119.	3.2	25
20	What Role Do Precrash Driver Actions Play in Work Zone Crashes?:Application of Hierarchical Models to Crash Data. Transportation Research Record, 2016, 2555, 1-11.	1.0	24
21	How big data serves for freight safety management at highway-rail grade crossings? A spatial approach fused with path analysis. Neurocomputing, 2016, 181, 38-52.	3.5	22
22	Understanding how relationships between crash frequency and correlates vary for multilane rural highways: Estimating geographically and temporally weighted regression models. Accident Analysis and Prevention, 2021, 157, 106146.	3.0	22
23	Revisiting Hit-and-Run Crashes: A Geo-Spatial Modeling Method. Transportation Research Record, 2018, 2672, 81-92.	1.0	21
24	An integrated spatio-temporal approach to examine the consequences of driving under the influence (DUI) in crashes. Accident Analysis and Prevention, 2020, 146, 105742.	3.0	19
25	Analyzing within garage fuel economy gaps to support vehicle purchasing decisions – A copula-based modeling & forecasting approach. Transportation Research, Part D: Transport and Environment, 2018, 63, 186-208.	3.2	17
26	How does on-road fuel economy vary with vehicle cumulative mileage and daily use?. Transportation Research, Part D: Transport and Environment, 2017, 55, 142-161.	3.2	16
27	Are gates at rail grade crossings always safe? Examining motorist gate-violation behaviors using path analysis. Transportation Research Part F: Traffic Psychology and Behaviour, 2018, 55, 314-324.	1.8	15
28	Are young Americans carless across the United States? A spatial analysis. Transportation Research, Part D: Transport and Environment, 2020, 78, 102197.	3.2	15
29	Informed decision-making by integrating historical on-road driving performance data in high-resolution maps for connected and automated vehicles. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2020, 24, 11-23.	2.6	15
30	Severity of emergency natural gas distribution pipeline incidents: Application of an integrated spatio-temporal approach fused with text mining. Journal of Loss Prevention in the Process Industries, 2021, 69, 104383.	1.7	13
31	Driver behavior at highway–rail grade crossings with passive traffic controls: A driving simulator study. Journal of Transportation Safety and Security, 2016, 8, 37-55.	1.1	12
32	Is the front passenger seat always the "death seat� An application of a hierarchical ordered probit model for occupant injury severity. International Journal of Injury Control and Safety Promotion, 2020, 27, 438-446.	1.0	12
33	Challenging human driver taxis with shared autonomous vehicles: a case study of Chicago. Transportation Letters, 2020, 12, 701-705.	1.8	11
34	How do college students perceive future shared mobility with autonomous Vehicles? A survey of the University of Alabama students. International Journal of Transportation Science and Technology, 2022, 11, 189-204.	2.0	9
35	Integrating machine learning into path analysis for quantifying behavioral pathways in bicycle-motor vehicle crashes. Accident Analysis and Prevention, 2022, 168, 106622.	3.0	8
36	Pathway analysis of relationships among community development, active travel behavior, body mass index, and self-rated health. International Journal of Sustainable Transportation, 2022, 16, 340-356.	2.1	7

#	Article	IF	CITATIONS
37	Behavioral pathways in bicycle-motor vehicle crashes: From contributing factors, pre-crash actions, to injury severities. Journal of Safety Research, 2021, 77, 229-240.	1.7	7
38	Constructing spatiotemporal driving volatility profiles for connected and automated vehicles in existing highway networks. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2022, 26, 572-585.	2.6	7
39	Heterogeneity assessment in incident duration modelling: Implications for development of practical strategies for small & Department of examp; large scale incidents. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2022, 26, 586-601.	2.6	7
40	From the past to the future: Modeling the temporal instability of safety performance functions. Accident Analysis and Prevention, 2022, 167 , 106592 .	3.0	7
41	Bayesian Approach to Developing Context-Based Crash Modification Factors for Medians on Rural Four-Lane Roadways. Transportation Research Record, 2021, 2675, 1316-1330.	1.0	6
42	Fuel economy gaps within and across garages: A bivariate random parameters seemingly unrelated regression approach. International Journal of Sustainable Transportation, 2019, 13, 324-339.	2.1	4
43	How much information is lost when sampling driving behavior data? Indicators to quantify the extent of information loss. Journal of Intelligent and Connected Vehicles, 2020, 3, 17-29.	3.6	4
44	An Analysis of the Effects of Crash Factors and Precrash Actions on Side Impact Crashes at Unsignalized Intersections. Journal of Advanced Transportation, 2021, 2021, 1-17.	0.9	3
45	A comparative study of factors associated with motorcycle crash severities under different causal scenarios. Journal of Transportation Safety and Security, 2023, 15, 376-396.	1.1	3
46	A low-cost approach to identify hazard curvature for local road networks using open-source data. Transportation Research Interdisciplinary Perspectives, 2021, 10, 100393.	1.6	1
47	Enabling Transportation Networks with Automated Vehicles: From Individual Vehicle Motion Control to Networked Fleet Management. Lecture Notes in Mobility, 2020, , 49-62.	0.2	1