Michael J Betenbaugh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5428205/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nature Biotechnology, 2011, 29, 735-741.	9.4	699
2	A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Current Opinion in Biotechnology, 2008, 19, 430-436.	3.3	524
3	Sex, age, and hospitalization drive antibody responses in a COVID-19 convalescent plasma donor population. Journal of Clinical Investigation, 2020, 130, 6141-6150.	3.9	375
4	Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nature Biotechnology, 2013, 31, 759-765.	9.4	340
5	The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Applied Microbiology and Biotechnology, 2011, 91, 835-844.	1.7	248
6	A critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales. Algal Research, 2014, 4, 76-88.	2.4	234
7	Life and death in mammalian cell culture: strategies for apoptosis inhibition. Trends in Biotechnology, 2004, 22, 174-180.	4.9	205
8	A Consensus Genome-scale Reconstruction of Chinese Hamster Ovary Cell Metabolism. Cell Systems, 2016, 3, 434-443.e8.	2.9	205
9	COVID-19 Serology at Population Scale: SARS-CoV-2-Specific Antibody Responses in Saliva. Journal of Clinical Microbiology, 2020, 59, .	1.8	193
10	Determination of Nucleotides and Sugar Nucleotides Involved in Protein Glycosylation by High-Performance Anion-Exchange Chromatography: Sugar Nucleotide Contents in Cultured Insect Cells and Mammalian Cells. Analytical Biochemistry, 2001, 293, 129-137.	1.1	192
11	Proteomic Analysis of Chinese Hamster Ovary Cells. Journal of Proteome Research, 2012, 11, 5265-5276.	1.8	168
12	Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a webâ€based target finding tool. Biotechnology and Bioengineering, 2014, 111, 1604-1616.	1.7	167
13	A mathematical model of N-linked glycosylation. Biotechnology and Bioengineering, 2005, 92, 711-728.	1.7	163
14	The emerging CHO systems biology era: harnessing the â€~omics revolution for biotechnology. Current Opinion in Biotechnology, 2013, 24, 1102-1107.	3.3	159
15	Controlling -linked glycan site occupancy. Biochimica Et Biophysica Acta - General Subjects, 2005, 1726, 121-137.	1.1	149
16	Design and Production of Bispecific Antibodies. Antibodies, 2019, 8, 43.	1.2	146
17	Transcriptome and proteome analysis of Chinese hamster ovary cells under low temperature and butyrate treatment. Journal of Biotechnology, 2010, 145, 143-159.	1.9	137
18	The effects of alternative pretreatment strategies on anaerobic digestion and methane production from different algal strains. Bioresource Technology, 2014, 155, 366-372.	4.8	132

#	Article	IF	CITATIONS
19	Comparing N-glycan processing in mammalian cell lines to native and engineered lepidopteran insect cell lines. Glycoconjugate Journal, 2004, 21, 343-360.	1.4	131
20	Microalgal biomass production and carbon dioxide sequestration from an integrated ethanol biorefinery in Iowa: A technical appraisal and economic feasibility evaluation. Biomass and Bioenergy, 2011, 35, 3865-3876.	2.9	128
21	An In Vitro Uniaxial Stretch Model for Axonal Injury. Annals of Biomedical Engineering, 2003, 31, 589-598.	1.3	112
22	Comparative Analyses of Three Chlorella Species in Response to Light and Sugar Reveal Distinctive Lipid Accumulation Patterns in the Microalga C. sorokiniana. PLoS ONE, 2014, 9, e92460.	1.1	110
23	Bioprospecting of microalgae for integrated biomass production and phytoremediation of unsterilized wastewater and anaerobic digestion centrate. Applied Microbiology and Biotechnology, 2015, 99, 6139-6154.	1.7	107
24	Differential N-Glycan Patterns of Secreted and Intracellular IgG Produced in Trichoplusia ni Cells. Journal of Biological Chemistry, 1997, 272, 9062-9070.	1.6	106
25	Modifying secretion and post-translational processing in insect cells. Current Opinion in Biotechnology, 1999, 10, 142-145.	3.3	99
26	Part II. Overexpression ofbcl-2 family members enhances survival of mammalian cells in response to various culture insults. , 2000, 67, 555-564.		99
27	Overcoming apoptosis: new methods for improving protein-expression systems. Trends in Biotechnology, 1998, 16, 88-95.	4.9	97
28	Quantification of cell culture factors affecting recombinant protein yields in baculovirus-infected insect cells. Biotechnology and Bioengineering, 1992, 39, 614-618.	1.7	96
29	A reference genome of the Chinese hamster based on a hybrid assembly strategy. Biotechnology and Bioengineering, 2018, 115, 2087-2100.	1.7	95
30	Expression of antiâ€apoptosis genes alters lactate metabolism of Chinese Hamster Ovary cells in culture. Biotechnology and Bioengineering, 2009, 103, 592-608.	1.7	92
31	Enhanced cell culture performance using inducible anti-apoptotic genes E1B-19K and Aven in the production of a monoclonal antibody with Chinese hamster ovary cells. Biotechnology and Bioengineering, 2007, 97, 877-892.	1.7	90
32	A mathematical model to derive N-glycan structures and cellular enzyme activities from mass spectrometric data. Glycobiology, 2009, 19, 1163-1175.	1.3	90
33	Inhibiting apoptosis in mammalian cell culture using the caspase inhibitor XIAP and deletion mutants. Biotechnology and Bioengineering, 2002, 77, 704-716.	1.7	88
34	Glucose depletion activates mmu-miR-466h-5p expression through oxidative stress and inhibition of histone deacetylation. Nucleic Acids Research, 2012, 40, 7291-7302.	6.5	87
35	Cloning and Expression of the HumanN-Acetylneuraminic Acid Phosphate Synthase Gene with 2-Keto-3-deoxy-d-glycero- d-galacto-nononic Acid Biosynthetic Ability. Journal of Biological Chemistry, 2000, 275, 17869-17877.	1.6	86
36	A novel microRNA mmuâ€miRâ€466h affects apoptosis regulation in mammalian cells. Biotechnology and Bioengineering, 2011, 108, 1651-1661.	1.7	86

#	Article	IF	CITATIONS
37	Genome-Scale Metabolic Model for the Green Alga <i>Chlorella vulgaris</i> UTEX 395 Accurately Predicts Phenotypes under Autotrophic, Heterotrophic, and Mixotrophic Growth Conditions. Plant Physiology, 2016, 172, 589-602.	2.3	86
38	N-glycan patterns of human transferrin produced in Trichoplusia ni insect cells: effects of mammalian galactosyltransferase. Clycobiology, 2000, 10, 837-847.	1.3	83
39	Aven and Bcl-xL enhance protection against apoptosis for mammalian cells exposed to various culture conditions. Biotechnology and Bioengineering, 2004, 85, 589-600.	1.7	82
40	Molecular Chaperones Stimulate the Functional Expression of the Cocaine-sensitive Serotonin Transporter. Journal of Biological Chemistry, 1999, 274, 17551-17558.	1.6	81
41	Links between metabolism and apoptosis in mammalian cells: Applications for anti-apoptosis engineering. Metabolic Engineering, 2007, 9, 317-326.	3.6	80
42	Part I. Bcl-2 and bcl-xL limit apoptosis upon infection with alphavirus vectors. Biotechnology and Bioengineering, 2000, 67, 544-554.	1.7	79
43	A perspective on microarrays: current applications, pitfalls, and potential uses. Microbial Cell Factories, 2007, 6, 4.	1.9	77
44	Antibody glycoengineering strategies in mammalian cells. Biotechnology and Bioengineering, 2018, 115, 1378-1393.	1.7	76
45	Durable SARS-CoV-2 B cell immunity after mild or severe disease. Journal of Clinical Investigation, 2021, 131, .	3.9	76
46	Glycoengineering of Chinese hamster ovary cells for enhanced erythropoietin Nâ€glycan branching and sialylation. Biotechnology and Bioengineering, 2015, 112, 2343-2351.	1.7	75
47	Sequencing the CHO DXB11 genome reveals regional variations in genomic stability and haploidy. BMC Genomics, 2015, 16, 160.	1.2	75
48	Coexpression of Molecular Chaperone BiP Improves Immunoglobulin Solubility and IgG Secretion from Trichoplusia ni Insect Cells. Biotechnology Progress, 1997, 13, 96-104.	1.3	74
49	Chinese hamster genome database: An online resource for the CHO community at www.CHOgenome.org. Biotechnology and Bioengineering, 2012, 109, 1353-1356.	1.7	74
50	Genome-scale reconstructions of the mammalian secretory pathway predict metabolic costs and limitations of protein secretion. Nature Communications, 2020, 11, 68.	5.8	74
51	The effect of iron on growth, lipid accumulation, and gene expression profile of the freshwater microalga Chlorella sorokiniana. Applied Microbiology and Biotechnology, 2014, 98, 9473-9481.	1.7	72
52	Structure and synthesis of polyisoprenoids used in N-glycosylation across the three domains of life. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 485-494.	1.1	71
53	SnapShot: N-Glycosylation Processing Pathways across Kingdoms. Cell, 2017, 171, 258-258.e1.	13.5	71
54	Stable inhibition of mmu-miR-466h-5p improves apoptosis resistance and protein production in CHO cells. Metabolic Engineering, 2013, 16, 87-94.	3.6	70

#	Article	IF	CITATIONS
55	Sex Differences in Lung Imaging and SARS-CoV-2 Antibody Responses in a COVID-19 Golden Syrian Hamster Model. MBio, 2021, 12, e0097421.	1.8	69
56	Study of caspase inhibitors for limiting death in mammalian cell culture. Biotechnology and Bioengineering, 2003, 81, 329-340.	1.7	68
57	Karyotype variation of CHO host cell lines over time in culture characterized by chromosome counting and chromosome painting. Biotechnology and Bioengineering, 2018, 115, 165-173.	1.7	67
58	Overexpression of a cytosolic chaperone to improve solubility and secretion of a recombinant IgG protein in insect cells. Biotechnology and Bioengineering, 1998, 58, 196-203.	1.7	66
59	Conversion of MDCK cell line to suspension culture by transfecting with human <i>siat7e</i> gene and its application for influenza virus production. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14802-14807.	3.3	66
60	QUANTITY: An Isobaric Tag for Quantitative Glycomics. Scientific Reports, 2015, 5, 17585.	1.6	65
61	Anaerobic digestion of lipid-extracted Auxenochlorella protothecoides biomass for methane generation and nutrient recovery. Bioresource Technology, 2015, 183, 229-239.	4.8	65
62	Mimicking lichens: incorporation of yeast strains together with sucrose-secreting cyanobacteria improves survival, growth, ROS removal, and lipid production in a stable mutualistic co-culture production platform. Biotechnology for Biofuels, 2017, 10, 55.	6.2	65
63	Recombinant Antibody Production in CHO and NS0 Cells: Differences and Similarities. BioDrugs, 2018, 32, 571-584.	2.2	65
64	Biosynthesis of human-type N-glycans in heterologous systems. Current Opinion in Structural Biology, 2004, 14, 601-606.	2.6	64
65	Early prediction of instability of chinese hamster ovary cell lines expressing recombinant antibodies and antibodyâ€fusion proteins. Biotechnology and Bioengineering, 2012, 109, 1016-1030.	1.7	64
66	Physiological evaluation of a new <i>Chlorella sorokiniana</i> isolate for its biomass production and lipid accumulation in photoautotrophic and heterotrophic cultures. Biotechnology and Bioengineering, 2012, 109, 1958-1964.	1.7	62
67	Integration of the Transcriptome and Glycome for Identification of Glycan Cell Signatures. PLoS Computational Biology, 2013, 9, e1002813.	1.5	61
68	Effects of Co-Expressing Chaperone BiP on Functional Antibody Production in the Baculovirus System. Protein Expression and Purification, 1994, 5, 595-603.	0.6	60
69	Production andN-glycan analysis of secreted human erythropoietin glycoprotein in stably transfectedDrosophila S2 cells. Biotechnology and Bioengineering, 2005, 92, 452-461.	1.7	60
70	Cloning and expression of human sialic acid pathway genes to generate CMP-sialic acids in insect cells. Glycoconjugate Journal, 2001, 18, 205-213.	1.4	58
71	Expression of a functional Drosophila melanogasterN-acetylneuraminic acid (Neu5Ac) phosphate synthase gene: evidence for endogenous sialic acid biosynthetic ability in insects. Glycobiology, 2002, 12, 73-83.	1.3	58
72	Enhancement of transient gene expression and culture viability using Chinese hamster ovary cells overexpressing Bclâ€x _L . Biotechnology and Bioengineering, 2008, 101, 567-578.	1.7	58

#	Article	IF	CITATIONS
73	Effects of dissolved oxygen shock on the stability of recombinantEscherichia coli containing plasmid pKN401. Biotechnology and Bioengineering, 1987, 29, 85-91.	1.7	56
74	Engineering Sialic Acid Synthetic Ability into Insect Cells: Identifying Metabolic Bottlenecks and Devising Strategies To Overcome Themâ€. Biochemistry, 2003, 42, 15215-15225.	1.2	56
75	I. Study of protein aggregation due to heat denaturation: A structural approach using circular dichroism spectroscopy, nuclear magnetic resonance, and static light scattering. , 1998, 59, 273-280.		55
76	Synthetic microbial communities of heterotrophs and phototrophs facilitate sustainable growth. Nature Communications, 2020, 11, 3803.	5.8	55
77	Humanization of Lepidopteran Insect-Cell-Produced Glycoproteins. Accounts of Chemical Research, 2003, 36, 613-620.	7.6	54
78	A multiâ€pronged investigation into the effect of glucose starvation and culture duration on fedâ€batch CHO cell culture. Biotechnology and Bioengineering, 2015, 112, 2172-2184.	1.7	54
79	Phytoremediation of agriculture runoff by filamentous algae poly-culture for biomethane production, and nutrient recovery for secondary cultivation of lipid generating microalgae. Bioresource Technology, 2016, 222, 294-308.	4.8	54
80	Environmental stimuli drive a transition from cooperation to competition in synthetic phototrophic communities. Nature Microbiology, 2019, 4, 2184-2191.	5.9	54
81	Mclâ€l overexpression leads to higher viabilities and increased production of humanized monoclonal antibody in Chinese hamster ovary cells. Biotechnology Progress, 2009, 25, 1161-1168.	1.3	53
82	Nucleocapsid- and virus-like particles assemble in cells infected with recombinant baculoviruses or vaccinia viruses expressing the M and the S segments of Hantaan virus. Virus Research, 1995, 38, 111-124.	1.1	52
83	Engineering cells to improve protein expression. Current Opinion in Structural Biology, 2014, 26, 32-38.	2.6	52
84	Bcl-2 family in inter-organelle modulation of calcium signaling; roles in bioenergetics and cell survival. Journal of Bioenergetics and Biomembranes, 2014, 46, 1-15.	1.0	52
85	Combining caspase and mitochondrial dysfunction inhibitors of apoptosis to limit cell death in mammalian cell cultures. Biotechnology and Bioengineering, 2006, 94, 362-372.	1.7	51
86	Rescue of Immunoglobulins from Insolubility Is Facilitated by PDI in the Baculovirus Expression System. Protein Expression and Purification, 1996, 7, 281-288.	0.6	50
87	Comparison of Bcl-2 to a Bcl-2 deletion mutant for mammalian cells exposed to culture insults. Biotechnology and Bioengineering, 2001, 73, 211-222.	1.7	49
88	Enhancement of cell proliferation in various mammalian cell lines by gene insertion of a cyclin-dependent kinase homolog. BMC Biotechnology, 2007, 7, 71.	1.7	49
89	Predicting Dynamic Metabolic Demands in the Photosynthetic Eukaryote <i>Chlorella vulgaris</i> . Plant Physiology, 2018, 176, 450-462.	2.3	49
90	Purification, Characterization, and Cloning of a Spodoptera frugiperda Sf9 β-N-Acetylhexosaminidase That Hydrolyzes Terminal N-Acetylglucosamine on the N-Glycan Core. Journal of Biological Chemistry, 2006, 281, 19545-19560.	1.6	48

#	Article	IF	CITATIONS
91	The impact of anti-apoptotic gene Bcl-2â^† expression on CHO central metabolism. Metabolic Engineering, 2014, 25, 92-102.	3.6	48
92	Physiologic and pathophysiologic consequences of altered sialylation and glycosylation on ion channel function. Biochemical and Biophysical Research Communications, 2014, 453, 243-253.	1.0	48
93	Synergistic co-digestion of wastewater grown algae-bacteria polyculture biomass and cellulose to optimize carbon-to-nitrogen ratio and application of kinetic models to predict anaerobic digestion energy balance. Bioresource Technology, 2018, 269, 210-220.	4.8	48
94	A comparison of the properties of a Bcl-xL variant to the wild-type anti-apoptosis inhibitor in mammalian cell cultures. Metabolic Engineering, 2003, 5, 230-245.	3.6	46
95	Highâ€ŧhroughput screening and selection of mammalian cells for enhanced protein production. Biotechnology Journal, 2016, 11, 853-865.	1.8	45
96	<i>N-</i> Glycosylation of IgG and IgG-Like Recombinant Therapeutic Proteins: Why Is It Important and How Can We Control It?. Annual Review of Chemical and Biomolecular Engineering, 2020, 11, 311-338.	3.3	45
97	An improved colony PCR procedure for genetic screening of Chlorella and related microalgae. Biotechnology Letters, 2011, 33, 1615-1619.	1.1	44
98	Cellular Trafficking and Photochemical Internalization of Cell Penetrating Peptide Linked Cargo Proteins: A Dual Fluorescent Labeling Study. Bioconjugate Chemistry, 2011, 22, 556-566.	1.8	43
99	Application of 13C flux analysis to identify high-productivity CHO metabolic phenotypes. Metabolic Engineering, 2017, 43, 218-225.	3.6	43
100	Comprehensive Glycoproteomic Analysis of Chinese Hamster Ovary Cells. Analytical Chemistry, 2018, 90, 14294-14302.	3.2	42
101	Effects of plasmid amplification and recombinant gene expression on the growth kinetics of recombinantE. coli. Biotechnology and Bioengineering, 1989, 33, 1425-1436.	1.7	41
102	Antiapoptosis chemicals prolong productive lifetimes of mammalian cells upon Sindbis virus vector infection. Biotechnology and Bioengineering, 1999, 65, 298-305.	1.7	41
103	Complex-type biantennary N-glycans of recombinant human transferrin from Trichoplusia ni insect cells expressing mammalian beta-1,4-galactosyltransferase and beta-1,2-N-acetylglucosaminyltransferase II. Glycobiology, 2003, 13, 23-34.	1.3	41
104	Large-scale screening identifies a novel microRNA, miR-15a-3p, which induces apoptosis in human cancer cell lines. RNA Biology, 2013, 10, 287-300.	1.5	41
105	The non-apoptotic action of Bcl-xL: regulating Ca2+ signaling and bioenergetics at the ER-mitochondrion interface. Journal of Bioenergetics and Biomembranes, 2016, 48, 211-225.	1.0	41
106	Mixed Trophic State Production Process for Microalgal Biomass with High Lipid Content for Generating Biodiesel and Biogas. Bioenergy Research, 2014, 7, 1174-1185.	2.2	40
107	Systems Glycobiology: Integrating Glycogenomics, Glycoproteomics, Glycomics, and Other â€ [~] Omics Data Sets to Characterize Cellular Glycosylation Processes. Journal of Molecular Biology, 2016, 428, 3337-3352.	2.0	39
108	Model-based analysis of N-glycosylation in Chinese hamster ovary cells. PLoS ONE, 2017, 12, e0175376.	1.1	39

#	Article	IF	CITATIONS
109	Integrated Genome and Protein Editing Swaps <i>α</i> â€2,6 Sialylation for <i>α</i> â€2,3 Sialic Acid on Recombinant Antibodies from CHO. Biotechnology Journal, 2017, 12, 1600502.	1.8	38
110	II. Electrostatic effect in the aggregation of heat-denatured RNase A and implications for protein additive design. , 1998, 59, 281-285.		37
111	Anti-apoptotic genes Aven and E1B-19K enhance performance of BHK cells engineered to express recombinant factor VIII in batch and low perfusion cell culture. Biotechnology and Bioengineering, 2007, 98, 825-841.	1.7	37
112	Improvement of product yields by temperature-shifting ofEscherichia coli cultures containing plasmid pOU140. Biotechnology and Bioengineering, 1987, 29, 513-519.	1.7	36
113	Optimization of tetracyclineâ€responsive recombinant protein production and effect on cell growth and ER stress in mammalian cells. Biotechnology and Bioengineering, 2005, 91, 722-732.	1.7	36
114	False positive reactivity of recombinant, diagnostic, glycoproteins produced in High Fiveâ,,¢ insect cells: Effect of glycosylation. Journal of Immunological Methods, 2008, 330, 130-136.	0.6	36
115	Expression of a Functional Drosophila melanogaster CMP-sialic Acid Synthetase. Journal of Biological Chemistry, 2006, 281, 15929-15940.	1.6	35
116	Elucidation of the CHO Super-Ome (CHO-SO) by Proteoinformatics. Journal of Proteome Research, 2015, 14, 4687-4703.	1.8	35
117	Characterization of N-acetylneuraminic acid synthase isoenzyme 1 from Campylobacter jejuni. Biochemical Journal, 2004, 383, 83-89.	1.7	34
118	Assessment of the coordinated role of ST3GAL3, ST3GAL4 and ST3GAL6 on the $\hat{1}\pm 2,3$ sialylation linkage of mammalian glycoproteins. Biochemical and Biophysical Research Communications, 2015, 463, 211-215.	1.0	34
119	Feast or famine: autophagy control and engineering in eukaryotic cell culture. Current Opinion in Biotechnology, 2008, 19, 518-526.	3.3	32
120	A novel sugar analog enhances sialic acid production and biotherapeutic sialylation in CHO cells. Biotechnology and Bioengineering, 2017, 114, 1899-1902.	1.7	32
121	Combinatorial genome and protein engineering yields monoclonal antibodies with hypergalactosylation from CHO cells. Biotechnology and Bioengineering, 2017, 114, 2848-2856.	1.7	32
122	Production of lipid-containing algal-bacterial polyculture in wastewater and biomethanation of lipid extracted residues: Enhancing methane yield through hydrothermal pretreatment and relieving solvent toxicity through co-digestion. Science of the Total Environment, 2019, 653, 1377-1394.	3.9	32
123	E2F-1 overexpression increases viable cell density in batch cultures of Chinese hamster ovary cells. Journal of Biotechnology, 2008, 138, 103-106.	1.9	31
124	Efficient lipid extraction and quantification of fatty acids from algal biomass using accelerated solvent extraction (ASE). RSC Advances, 2016, 6, 29127-29134.	1.7	31
125	High-Throughput Lipidomic and Transcriptomic Analysis To Compare SP2/0, CHO, and HEK-293 Mammalian Cell Lines. Analytical Chemistry, 2017, 89, 1477-1485.	3.2	31
126	An unconventional uptake rate objective function approach enhances applicability of genome-scale models for mammalian cells. Npj Systems Biology and Applications, 2019, 5, 25.	1.4	30

#	Article	IF	CITATIONS
127	Inhibiting the apoptosis pathway using MDM2 in mammalian cell cultures. Biotechnology and Bioengineering, 2007, 97, 601-614.	1.7	29
128	GlycoFly: A Database of <i>Drosophila N</i> -linked Glycoproteins Identified Using SPEG–MS Techniques. Journal of Proteome Research, 2011, 10, 2777-2784.	1.8	29
129	A comparison of mathematical model predictions to experimental measurements for growth and recombinant protein production in induced cultures ofEscherichia coli. Biotechnology and Bioengineering, 1990, 36, 124-134.	1.7	28
130	A Bacterial Signal Peptidase Enhances Processing of a Recombinant Single Chain Antibody Fragment in Insect Cells. Biochemical and Biophysical Research Communications, 1999, 255, 444-450.	1.0	28
131	Mineral and non-carbon nutrient utilization and recovery during sequential phototrophic-heterotrophic growth of lipid-rich algae. Applied Microbiology and Biotechnology, 2014, 98, 5261-5273.	1.7	28
132	N-glycan structures of human transferrin produced by Lymantria dispar (gypsy moth) cells using the LdMNPV expression system. Glycobiology, 2003, 13, 539-548.	1.3	27
133	An HPLC-MALDI MS method for N-glycan analyses using smaller size samples: Application to monitor glycan modulation by medium conditions. Glycoconjugate Journal, 2009, 26, 1135-1149.	1.4	27
134	Enhanced transient recombinant protein production in CHO cells through the coâ€ŧransfection of the product gene with <i>Bclâ€x_L</i> . Biotechnology Journal, 2014, 9, 1164-1174.	1.8	27
135	β-(1→4)-Galactosyltransferase activity in native and engineered insect cells measured with time-resolved europium fluorescence. Carbohydrate Research, 2002, 337, 2181-2186.	1.1	26
136	Molecular Cloning and Characterization of a Novel <i>α</i> -Amylase from Antarctic Sea Ice Bacterium <i>Pseudoalteromonas</i> sp. M175 and Its Primary Application in Detergent. BioMed Research International, 2018, 2018, 1-16.	0.9	26
137	Thioredoxin Domain Non-equivalence and Anti-chaperone Activity of Protein Disulfide Isomerase Mutants in Vivo. Journal of Biological Chemistry, 1997, 272, 22556-22563.	1.6	25
138	Regulating apoptosis in mammalian cell cultures. Cytotechnology, 2006, 50, 77-92.	0.7	25
139	The beta-3 adrenergic agonist (CL-316,243) restores the expression of down-regulated fatty acid oxidation genes in type 2 diabetic mice. Nutrition and Metabolism, 2015, 12, 8.	1.3	25
140	Production of recombinant proteins by baculovirus-infected gypsy moth cells. Biotechnology Progress, 1991, 7, 462-467.	1.3	24
141	Bcl-2 inhibits apoptosis and extends recombinant protein production in cells infected with Sindbis viral vectors. Cytotechnology, 1996, 22, 169-178.	0.7	24
142	Application of microarrays to identify and characterize genes involved in attachment dependence in HeLa cells. Metabolic Engineering, 2007, 9, 241-251.	3.6	24
143	GlycoFish: A Database of Zebrafish <i>N</i> -linked Glycoproteins Identified Using SPEG Method Coupled with LC/MS. Analytical Chemistry, 2011, 83, 5296-5303.	3.2	24
144	Butyrated ManNAc analog improves protein expression in Chinese hamster ovary cells. Biotechnology and Bioengineering, 2018, 115, 1531-1541.	1.7	24

#	Article	IF	CITATIONS
145	Impact of nucleotide sugar metabolism on protein N-glycosylation in Chinese Hamster Ovary (CHO) cell culture. Current Opinion in Chemical Engineering, 2018, 22, 167-176.	3.8	24
146	Creating a synthetic lichen: Mutualistic co-culture of fungi and extracellular polysaccharide-secreting cyanobacterium Nostoc PCC 7413. Algal Research, 2020, 45, 101755.	2.4	24
147	Combining highâ€throughput screening of caspase activity with antiâ€apoptosis genes for development of robust CHO production cell lines. Biotechnology Progress, 2010, 26, 1367-1381.	1.3	23
148	Combining Butyrated ManNAc with Glycoengineered CHO Cells Improves EPO Glycan Quality and Production. Biotechnology Journal, 2019, 14, 1800186.	1.8	23
149	Engineering Intracellular CMP-Sialic Acid Metabolism into Insect Cells and Methods to Enhance Its Generationâ€. Biochemistry, 2005, 44, 7526-7534.	1.2	22
150	A peptide-linked recombinant glucocerebrosidase for targeted neuronal delivery: Design, production, and assessment. Journal of Biotechnology, 2016, 221, 1-12.	1.9	22
151	Ultra-deep next generation mitochondrial genome sequencing reveals widespread heteroplasmy in Chinese hamster ovary cells. Metabolic Engineering, 2017, 41, 11-22.	3.6	22
152	Glycoengineering of CHO Cells to Improve Product Quality. Methods in Molecular Biology, 2017, 1603, 25-44.	0.4	22
153	Modeling assembly, aggregation, and chaperoning of immunoglobulin G production in insect cells. , 1997, 56, 106-116.		21
154	Proliferation and Pluripotency of Human Embryonic Stem Cells Maintained on Type I Collagen. Stem Cells and Development, 2010, 19, 1923-1935.	1.1	21
155	Strategies for Engineering Protein N-Glycosylation Pathways in Mammalian Cells. Methods in Molecular Biology, 2015, 1321, 287-305.	0.4	21
156	Genome Sequence of the Oleaginous Green Alga, Chlorella vulgaris UTEX 395. Frontiers in Bioengineering and Biotechnology, 2018, 6, 37.	2.0	21
157	Utilizing genome-scale models to optimize nutrient supply for sustained algal growth and lipid productivity. Npj Systems Biology and Applications, 2019, 5, 33.	1.4	21
158	Antigen retrieval to improve the immunocytochemistry detection of sigma-1 receptors and ER chaperones. Histochemistry and Cell Biology, 2011, 135, 627-637.	0.8	20
159	Glycoproteomic and glycomic databases. Clinical Proteomics, 2014, 11, 15.	1.1	20
160	Microalgae as a Feedstock for Biofuel Precursors and Value-Added Products: Green Fuels and Golden Opportunities. BioResources, 2015, 11, .	0.5	20
161	Growth kinetics ofEschericia coli containing temperature-sensitive plasmid pOU140. Biotechnology and Bioengineering, 1987, 29, 1164-1172.	1.7	19
162	Chemical Caspase Inhibitors Enhance Cell Culture Viabilities and Protein Titer. Biotechnology Progress, 2007, 23, 506-511.	1.3	19

#	Article	IF	CITATIONS
163	MiRNA mimic screen for improved expression of functional neurotensin receptor from HEK 293 cells. Biotechnology and Bioengineering, 2015, 112, 1632-1643.	1.7	19
164	Redistribution of metabolic fluxes in Chlorella protothecoides by variation of media nitrogen concentration. Metabolic Engineering Communications, 2015, 2, 124-131.	1.9	18
165	Coupling enrichment methods with proteomics for understanding and treating disease. Proteomics - Clinical Applications, 2015, 9, 33-47.	0.8	18
166	Engineering the Assembly Pathway of the Baculovirus-Insect Cell Expression Systema. Annals of the New York Academy of Sciences, 1994, 721, 208-217.	1.8	17
167	Chaperone and foldase coexpression in the baculovirus-insect cell expression system. Cytotechnology, 1996, 20, 149-159.	0.7	17
168	Genomeâ€scale RNA interference screen identifies antizyme 1 (OAZ1) as a target for improvement of recombinant protein production in mammalian cells. Biotechnology and Bioengineering, 2016, 113, 2403-2415.	1.7	17
169	Modeling of nitrogen fixation and polymer production in the heterotrophic diazotroph Azotobacter vinelandii DJ. Metabolic Engineering Communications, 2020, 11, e00132.	1.9	17
170	Metabolic engineering II. Eukaryotic systems. Biotechnology and Bioengineering, 2002, 79, 509-531.	1.7	16
171	Optimization of One-Step In Situ Transesterification Method for Accurate Quantification of EPA in Nannochloropsis gaditana. Applied Sciences (Switzerland), 2016, 6, 343.	1.3	16
172	Glycoengineering of Mammalian Expression Systems on a Cellular Level. Advances in Biochemical Engineering/Biotechnology, 2018, 175, 37-69.	0.6	16
173	Multi-Tissue Computational Modeling Analyzes Pathophysiology of Type 2 Diabetes in MKR Mice. PLoS ONE, 2014, 9, e102319.	1.1	15
174	Proteogenomic Annotation of Chinese Hamsters Reveals Extensive Novel Translation Events and Endogenous Retroviral Elements. Journal of Proteome Research, 2019, 18, 2433-2445.	1.8	15
175	<i>Egr1</i> and <i>Gas6</i> facilitate the adaptation of HEKâ€293 cells to serumâ€free media by conferring enhanced viability and higher growth rates. Biotechnology and Bioengineering, 2008, 99, 1443-1452.	1.7	14
176	Protein and Genome Evolution in Mammalian Cells for Biotechnology Applications. Molecular Biotechnology, 2009, 42, 216-223.	1.3	14
177	Production and antigenic properties of influenza virus from suspension MDCK-siat7e cells in a bench-scale bioreactor. Vaccine, 2010, 28, 7193-7201.	1.7	14
178	DmSAS Is Required for Sialic Acid Biosynthesis in Cultured Drosophila Third Instar Larvae CNS neurons. ACS Chemical Biology, 2011, 6, 1287-1295.	1.6	14
179	Exploiting the proteomics revolution in biotechnology: from disease and antibody targets to optimizing bioprocess development. Current Opinion in Biotechnology, 2014, 30, 80-86.	3.3	14
180	Microfluidic bubbler facilitates near complete mass transfer for sustainable multiphase and microbial processing. Biotechnology and Bioengineering, 2016, 113, 1924-1933.	1.7	14

#	Article	IF	CITATIONS
181	Partners for life: building microbial consortia for the future. Current Opinion in Biotechnology, 2020, 66, 292-300.	3.3	14
182	Evidence for a mutualistic relationship between the cyanobacteria Nostoc and fungi Aspergilli in different environments. Applied Microbiology and Biotechnology, 2020, 104, 6413-6426.	1.7	14
183	Taking the pulse of bioprocesses: at-line and in-line monitoring of mammalian cell cultures. Current Opinion in Biotechnology, 2021, 71, 191-197.	3.3	14
184	Increased expression of the integral membrane protein ErbB2 in Chinese hamster ovary cells expressing the anti-apoptotic gene Bcl-xL. Protein Expression and Purification, 2009, 67, 41-47.	0.6	13
185	The importance and future of biochemical engineering. Biotechnology and Bioengineering, 2020, 117, 2305-2318.	1.7	13
186	One-Step Enrichment of Intact Glycopeptides From Glycoengineered Chinese Hamster Ovary Cells. Frontiers in Chemistry, 2020, 8, 240.	1.8	13
187	Baculovirus Expression of Gene 6 of the IDIR Strain of Group B Rotavirus (GBR): Coding Assignment of the Major Inner Capsid Protein. Virology, 1993, 193, 367-375.	1.1	12
188	Cells by Design: A Mini-Review of Targeting Cell Engineering Using DNA Microarrays. Molecular Biotechnology, 2008, 39, 105-111.	1.3	12
189	An improved in vitro and in vivo Sindbis virus expression system through host and virus engineering. Virus Research, 2009, 141, 1-12.	1.1	12
190	A Linkage-specific Sialic Acid Labeling Strategy Reveals Different Site-specific Glycosylation Patterns in SARS-CoV-2 Spike Protein Produced in CHO and HEK Cell Substrates. Frontiers in Chemistry, 2021, 9, 735558.	1.8	12
191	Adaptive immune responses in vaccinated patients with symptomatic SARS-CoV-2 Alpha infection. JCI Insight, 2022, 7, .	2.3	12
192	Polyprenyl lipid synthesis in mammalian cells expressing human cis-prenyl transferase. Biochemical and Biophysical Research Communications, 2005, 331, 379-383.	1.0	11
193	Transient and Stable Expression of the Neurotensin Receptor NTS1: A Comparison of the Baculovirus-Insect Cell and the T-REx-293 Expression Systems. PLoS ONE, 2013, 8, e63679.	1.1	11
194	Comparison of biomass and lipid production under ambient carbon dioxide vigorous aeration and 3% carbon dioxide condition among the lead candidate Chlorella strains screened by various photobioreactor scales. Bioresource Technology, 2015, 198, 246-255.	4.8	11
195	Lessons from the Hamster: <i>Cricetulus griseus</i> Tissue and CHO Cell Line Proteome Comparison. Journal of Proteome Research, 2017, 16, 3672-3687.	1.8	11
196	Progressing from transient to stable packaging cell lines for continuous production of lentiviral and gammaretroviral vectors. Current Opinion in Chemical Engineering, 2018, 22, 128-137.	3.8	11
197	Methods for Using Small Non-Coding RNAs to Improve Recombinant Protein Expression in Mammalian Cells. Genes, 2018, 9, 25.	1.0	11
198	Expanded Chinese hamster organ and cell line proteomics profiling reveals tissue-specific functionalities. Scientific Reports, 2020, 10, 15841.	1.6	11

#	Article	IF	CITATIONS
199	Investigating the Secretory Pathway of the Baculovirus-Insect Cell System Using a Secretory Green Fluorescent Protein. Biotechnology Progress, 2000, 16, 716-723.	1.3	10
200	Directed evolution of mammalian anti-apoptosis proteins by somatic hypermutation. Protein Engineering, Design and Selection, 2012, 25, 27-38.	1.0	10
201	Identifying HIPK1 as Target of miRâ€22â€3p Enhancing Recombinant Protein Production From HEK 293 Cell by Using Microarray and HTP siRNA Screen. Biotechnology Journal, 2018, 13, 1700342.	1.8	10
202	Metabolic engineering challenges of extending N-glycan pathways in Chinese hamster ovary cells. Metabolic Engineering, 2020, 61, 301-314.	3.6	10
203	Glycoengineering of Aspergillus nidulans to produce precursors for humanized N-glycan structures. Metabolic Engineering, 2021, 67, 153-163.	3.6	10
204	Identification of novel inhibitory metabolites and impact verification on growth and protein synthesis in mammalian cells. Metabolic Engineering Communications, 2021, 13, e00182.	1.9	10
205	Metabolic analysis of the asparagine and glutamine dynamics in an industrial Chinese hamster ovary fedâ€batch process. Biotechnology and Bioengineering, 2022, 119, 807-819.	1.7	10
206	Implications and applications of apoptosis in cell culture. Current Opinion in Biotechnology, 1995, 6, 198-202.	3.3	9
207	Cellular traffic cops: the interplay between lipids and proteins regulates vesicular formation, trafficking, and signaling in mammalian cells. Current Opinion in Biotechnology, 2015, 36, 215-221.	3.3	9
208	Anaerobic digestion restricted to phase I for nutrient release and energy production using waste-water grown Chlorella vulgaris. Chemical Engineering Journal, 2018, 352, 756-764.	6.6	9
209	Characterization of intact glycopeptides reveals the impact of culture media on siteâ€specific glycosylation of EPOâ€Fc fusion protein generated by CHOâ€GS cells. Biotechnology and Bioengineering, 2019, 116, 2303-2315.	1.7	9
210	Chemical speciation of trace metals in mammalian cell culture media: looking under the hood to boost cellular performance and product quality. Current Opinion in Biotechnology, 2021, 71, 216-224.	3.3	9
211	Improved protein expression in HEK293 cells by over-expressing miR-22 and knocking-out its target gene, HIPK1. New Biotechnology, 2020, 54, 28-33.	2.4	8
212	Mechanistic and data-driven modeling of protein glycosylation. Current Opinion in Chemical Engineering, 2021, 32, 100690.	3.8	8
213	The interplay of protein engineering and glycoengineering to fineâ€ŧune antibody glycosylation and its impact on effector functions. Biotechnology and Bioengineering, 2022, 119, 102-117.	1.7	8
214	Prospects of Multiproduct Algal Biorefineries Involving Cascading Processing of the Biomass Employing a Zero-Waste Approach. Current Pollution Reports, 0, , 1.	3.1	8
215	Analysis and metabolic engineering of lipid-linked oligosaccharides in glycosylation-deficient CHO cells. Biochemical and Biophysical Research Communications, 2010, 395, 36-41.	1.0	7
216	Increased expression of the integral membrane proteins EGFR and FGFR3 in antiâ€apoptotic Chinese hamster ovary cell lines. Biotechnology and Applied Biochemistry, 2012, 59, 155-162.	1.4	7

#	Article	IF	CITATIONS
217	Tat-tetanus toxin fragment C: a novel protein delivery vector and its use with photochemical internalization. Journal of Drug Targeting, 2013, 21, 662-674.	2.1	7
218	Pac-Man for biotechnology: co-opting degrons for targeted protein degradation to control and alter cell function. Current Opinion in Biotechnology, 2015, 36, 199-204.	3.3	7
219	Prolineâ€Rich Chaperones Are Compared Computationally and Experimentally for Their Abilities to Facilitate Recombinant Butyrylcholinesterase Tetramerization in CHO Cells. Biotechnology Journal, 2018, 13, e1700479.	1.8	7
220	Application of the CRISPR/Cas9 Gene Editing Method for Modulating Antibody Fucosylation in CHO Cells. Methods in Molecular Biology, 2018, 1850, 237-257.	0.4	7
221	Glycoproteomic Characterization of FUT8 Knock-Out CHO Cells Reveals Roles of FUT8 in the Glycosylation. Frontiers in Chemistry, 2021, 9, 755238.	1.8	7
222	Effects of Promoter Induction and Copy Number Amplification on Cloned Gene Expression and Growth of Recombinant Cell Cultures. Annals of the New York Academy of Sciences, 1990, 589, 111-120.	1.8	6
223	Elucidating the impact of cottonseed hydrolysates on CHO cell culture performance through transcriptomic analysis. Applied Microbiology and Biotechnology, 2021, 105, 271-285.	1.7	6
224	Epigenetic comparison of CHO hosts and clones reveals divergent methylation and transcription patterns across lineages. Biotechnology and Bioengineering, 2022, 119, 1062-1076.	1.7	6
225	Metabolic engineering in the 21st century: meeting global challenges of sustainability and health. Current Opinion in Biotechnology, 2008, 19, 411-413.	3.3	5
226	The impact of sialylation linkageâ€ŧype on the pharmacokinetics of recombinant butyrylcholinesterases. Biotechnology and Bioengineering, 2020, 117, 157-166.	1.7	5
227	Redox as a bioprocess parameter: analytical redox quantification in biological therapeutic production. Current Opinion in Biotechnology, 2021, 71, 49-54.	3.3	5
228	Chromosomal instability drives convergent and divergent evolution toward advantageous inherited traits in mammalian CHO bioproduction lineages. IScience, 2022, 25, 104074.	1.9	5
229	Metabolic engineering of CHO cells to prepare glycoproteins. Emerging Topics in Life Sciences, 2018, 2, 433-442.	1.1	4
230	Genome-Wide High-Throughput RNAi Screening for Identification of Genes Involved in Protein Production. Methods in Molecular Biology, 2018, 1850, 209-219.	0.4	4
231	Kinetic, metabolic, and statistical analytics: addressing metabolic transport limitations among organelles and microbial communities. Current Opinion in Biotechnology, 2021, 71, 91-97.	3.3	4
232	Examining the impact of carbon dioxide levels and modulation of resulting hydrogen peroxide in Chlorella vulgaris. Algal Research, 2021, 60, 102492.	2.4	4
233	Apoptosis in Biotechnology: Its Role in Mammalian Cell Culture and Methods of Inhibition. BioProcessing: Advances and Trends in Biological Product Development, 2002, 1, 61-68.	0.1	4
234	Stable Ectopic Expression of ST6GALNAC5 Induces Autocrine MET Activation and Anchorage-Independence in MDCK Cells. PLoS ONE, 2016, 11, e0148075.	1.1	4

#	Article	IF	CITATIONS
235	Harnessing Chinese hamster ovary cell proteomics for biopharmaceutical processing. Pharmaceutical Bioprocessing, 2014, 2, 421-435.	0.8	3
236	Significant impact of mTORC1 and ATF4 pathways in CHO cell recombinant protein production induced by CDK4/6 inhibitor. Biotechnology and Bioengineering, 2022, , .	1.7	3
237	Attenuation of glutamine synthetase selection marker improves product titer and reduces glutamine overflow in Chinese hamster ovary cells. Biotechnology and Bioengineering, 2022, , .	1.7	3
238	A proteomics approach to decipher a sticky CHO situation. Biotechnology and Bioengineering, 2022, 119, 2064-2075.	1.7	3
239	Achieving high throughput sequencing of a cDNA library utilizing an alternative protocol for the bench top next-generation sequencing system. Journal of Microbiological Methods, 2013, 92, 122-126.	0.7	2
240	Exploiting the Molecular Genetics of Microalgae. , 2015, , 331-352.		2
241	I. Study of protein aggregation due to heat denaturation: A structural approach using circular dichroism spectroscopy, nuclear magnetic resonance, and static light scattering. , 1998, 59, 273.		2
242	Proteomics in Cell Culture: From Genomics to Combined †Omics for Cell Line Engineering and Bioprocess Development. Cell Engineering, 2015, , 591-614.	0.4	2
243	A genomeâ€scale nutrient minimization forecast algorithm for controlling essential amino acid levels in CHO cell cultures. Biotechnology and Bioengineering, 2022, 119, 435-451.	1.7	2
244	Comparative systeomics to elucidate physiological differences between CHO and SP2/0 cell lines. Scientific Reports, 2022, 12, 3280.	1.6	2
245	Engineering redox sensors into CHO cells enables nearâ€realâ€time quantification of intracellular redox in bioprocesses. Biotechnology and Bioengineering, 2022, , .	1.7	2
246	Genetically Engineered Viral Antigens from Insect Cell Culture. Annals of the New York Academy of Sciences, 1992, 665, 210-218.	1.8	1
247	4.1 Control of Biotheraputics Glycosylation. , 2014, , 247-279.		1
248	II. Electrostatic effect in the aggregation of heat-denatured RNase A and implications for protein additive design. , 1998, 59, 281.		1
249	Controlling Apoptosis to Optimize Yields of Proteins from Mammalian Cells. Methods in Molecular Biology, 2012, 801, 111-123.	0.4	1
250	N-Acetylneuraminic Acid Synthase (NANS). , 2014, , 1523-1536.		1
251	Identification and Expression of the Outer Capsid Protein (VP4) of the IDIR Strain of Group B Rotavirus. Virology, 1993, 194, 724-733.	1.1	0
252	Chaperone and foldase coexpression in the baculovirus-insect cell expression system. Current Applications of Cell Culture Engineering, 1996, , 149-159.	0.1	0

#	Article	IF	CITATIONS
253	Glycoengineering and Modeling of Protein N-Glycosylation. Cell Engineering, 2009, , 217-231.	0.4	Ο
254	Measurement of sialic acid content on recombinant membrane proteins. BMC Proceedings, 2011, 5, P59.	1.8	0
255	Editorial Overview: Synthetic biology hybrids – a golden age of pathway engineering. Current Opinion in Biotechnology, 2015, 36, iv-vi.	3.3	0
256	Editorial overview: Bioanalytical tools, techniques, and trailblazers offer insight to drive bioprocess development. Current Opinion in Biotechnology, 2021, 71, iii-vi.	3.3	0
257	Mapping the path forward to next generation algal technologies: Workshop on understanding the rules of life and complexity in algal systems. Algal Research, 2021, 60, 102520.	2.4	0
258	MicroRNAs as Engineering Targets: Pathway Manipulation to Impact Bioprocess Phenotypes. , 2012, , 65-85.		0