Fuyang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5427966/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lrisin improves endothelial function in type 2 diabetes through reducing oxidative/nitrative stresses. Journal of Molecular and Cellular Cardiology, 2015, 87, 138-147.	1.9	164
2	Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1160-H1169.	3.2	131
3	Branched Chain Amino Acids Cause Liver Injury in Obese/Diabetic Mice by Promoting Adipocyte Lipolysis and Inhibiting Hepatic Autophagy. EBioMedicine, 2016, 13, 157-167.	6.1	111
4	TXNIP/Redd1 signalling and excessive autophagy: a novel mechanism of myocardial ischaemia/reperfusion injury in mice. Cardiovascular Research, 2020, 116, 645-657.	3.8	79
5	Sphingosine 1-phosphate signaling contributes to cardiac inflammation, dysfunction, and remodeling following myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H250-H261.	3.2	74
6	Branched chain amino acids exacerbate myocardial ischemia/reperfusion vulnerability via enhancing GCN2/ATF6/PPAR-α pathway-dependent fatty acid oxidation. Theranostics, 2020, 10, 5623-5640.	10.0	74
7	N-Cadherin Overexpression Mobilizes the Protective Effects of Mesenchymal Stromal Cells Against Ischemic Heart Injury Through a β-Catenin–Dependent Manner. Circulation Research, 2020, 126, 857-874.	4.5	62
8	A novel mechanism of diabetic vascular endothelial dysfunction: Hypoadiponectinemia-induced NLRP3 inflammasome activation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1556-1567.	3.8	51
9	Small Extracellular Vesicles From Brown Adipose Tissue Mediate Exercise Cardioprotection. Circulation Research, 2022, 130, 1490-1506.	4.5	42
10	FNDC5/Irisin attenuates diabetic cardiomyopathy in a type 2 diabetes mouse model by activation of integrin αV/β5-AKT signaling and reduction of oxidative/nitrosative stress. Journal of Molecular and Cellular Cardiology, 2021, 160, 27-41.	1.9	41
11	Adiponectin determines farnesoid X receptor agonism-mediated cardioprotection against post-infarction remodelling and dysfunction. Cardiovascular Research, 2018, 114, 1335-1349.	3.8	31
12	Adiponectin regulates SR Ca2+ cycling following ischemia/reperfusion via sphingosine 1-phosphate-CaMKII signaling in mice. Journal of Molecular and Cellular Cardiology, 2014, 74, 183-192.	1.9	29
13	Resistin promotes cardiac homing of mesenchymal stem cells and functional recovery after myocardial ischemia-reperfusion via the ERK1/2-MMP-9 pathway. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H233-H244.	3.2	27
14	κ-opioid receptor activation promotes mitochondrial fusion and enhances myocardial resistance to ischemia and reperfusion injury via STAT3-OPA1 pathway. European Journal of Pharmacology, 2020, 874, 172987.	3.5	23
15	Irisin Promotes Cardiac Homing of Intravenously Delivered MSCs and Protects against Ischemic Heart Injury. Advanced Science, 2022, 9, e2103697.	11.2	16
16	Excessive branched-chain amino acid accumulation restricts mesenchymal stem cell-based therapy efficacy in myocardial infarction. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	13
17	G protein coupled receptor kinase-2 upregulation causes κ-opioid receptor desensitization in diabetic heart. Biochemical and Biophysical Research Communications, 2017, 482, 658-664.	2.1	12
18	κ-Opioid receptor stimulation reduces palmitate-induced apoptosis via Akt/eNOS signaling pathway. Lipids in Health and Disease, 2019, 18, 52.	3.0	10

FUYANG ZHANG

#	Article	IF	CITATIONS
19	Accelerated FASTK mRNA degradation induced by oxidative stress is responsible for the destroyed myocardial mitochondrial gene expression and respiratory function in alcoholic cardiomyopathy. Redox Biology, 2021, 38, 101778.	9.0	9
20	Genetic ablation of Fas-activated serine/threonine kinase ameliorates obesity-related hepatic glucose and lipid metabolic disorders via sirtuin-1 signaling. Biochemical and Biophysical Research Communications, 2020, 529, 1066-1072.	2.1	5
21	Nucleostemin dysregulation contributes to ischemic vulnerability of diabetic hearts: Role of ribosomal biogenesis. Journal of Molecular and Cellular Cardiology, 2017, 108, 106-113.	1.9	4
22	Genetic ablation of fas-activated serine/threonine kinase ameliorates alcoholic liver disease through modulating HuR-SIRT1 mRNA complex stability. Free Radical Biology and Medicine, 2021, 166, 201-211.	2.9	4
23	Fas-Activated Serine/Threonine Kinase Governs Cardiac Mitochondrial Complex I Functional Integrity in Ischemia/Reperfusion Heart. Frontiers in Cell and Developmental Biology, 2020, 8, 630421.	3.7	1