Steffen Kurzhals

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5427879/steffen-kurzhals-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

16
papers321
citations11
h-index16
g-index16
ext. papers349
ext. citations5
avg, IF3.41
L-index

#	Paper	IF	Citations
16	The Role of Chain Molecular Weight and Hofmeister Series Ions in Thermal Aggregation of Poly(2-Isopropyl-2-Oxazoline) Grafted Nanoparticles. <i>Polymers</i> , 2018 , 10,	4.5	16
15	Influence of Grafted Block Copolymer Structure on Thermoresponsiveness of Superparamagnetic Core-Shell Nanoparticles. <i>Biomacromolecules</i> , 2018 , 19, 1435-1444	6.9	10
14	Controlled aggregation and cell uptake of thermoresponsive polyoxazoline-grafted superparamagnetic iron oxide nanoparticles. <i>Nanoscale</i> , 2017 , 9, 2793-2805	7.7	32
13	Aggregation of thermoresponsive core-shell nanoparticles: Influence of particle concentration, dispersant molecular weight and grafting. <i>Journal of Colloid and Interface Science</i> , 2017 , 500, 321-332	9.3	19
12	Thermoresponsive Polypeptoid-Coated Superparamagnetic Iron Oxide Nanoparticles by Surface-Initiated Polymerization. <i>Macromolecular Chemistry and Physics</i> , 2017 , 218, 1700116	2.6	12
11	Crosslinking of floating colloidal monolayers. <i>Monatshefte Fil Chemie</i> , 2017 , 148, 1539-1546	1.4	1
10	Magneto-Thermal Release from Nanoscale Unilamellar Hybrid Vesicles. <i>ChemNanoMat</i> , 2016 , 2, 1111-1	13 <u>.</u> G	19
9	Triggered Release from Thermoresponsive Polymersomes with Superparamagnetic Membranes. <i>Materials</i> , 2016 , 9,	3.5	21
8	Combination of Olefin Metathesis Polymerization with Click Chemistry 2015 , 207-227		1
7	Synthesis and Magneto-Thermal Actuation of Iron Oxide Core-PNIPAM Shell Nanoparticles. <i>ACS Applied Materials & District Materials & Di</i>	9.5	53
6	Melt-grafting for the synthesis of core-shell nanoparticles with ultra-high dispersant density. <i>Nanoscale</i> , 2015 , 7, 11216-25	7.7	38
5	Monitoring ROMP Crossover Chemistry via ESI-TOF MS. <i>Macromolecules</i> , 2013 , 46, 597-607	5.5	6
4	A Synthetic Approach to Homologous Blockcopolymers. <i>Macromolecular Symposia</i> , 2010 , 293, 63-66	0.8	6
3	Telechelic polynorbornenes with hydrogen bonding moieties by direct end capping of living chains. Journal of Polymer Science Part A, 2010 , 48, 5522-5532	2.5	15
2	Monitoring Block-Copolymer Crossover-Chemistry in ROMP: Catalyst Evaluation via Mass-Spectrometry (MALDI). <i>Macromolecules</i> , 2009 , 42, 9457-9466	5.5	33
1	Homologous Poly(isobutylene)s: Poly(isobutylene)/High-Density Poly(ethylene) Hybrid Polymers. <i>Macromolecules</i> , 2008 , 41, 8405-8412	5.5	39