
Michael J Jurczak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5427819/publications.pdf Version: 2024-02-01

MICHAEL LUDCZAK

#	Article	IF	CITATIONS
1	Myocardial brain-derived neurotrophic factor regulates cardiac bioenergetics through the transcription factor Yin Yang 1. Cardiovascular Research, 2023, 119, 571-586.	1.8	12
2	Diet-induced obese mice are resistant to improvements in cardiac function resulting from short-term adropin treatment. Current Research in Physiology, 2022, 5, 55-62.	0.8	3
3	Intestinal HIF-2α Regulates GLP-1 Secretion via Lipid Sensing in L-Cells. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1057-1072.	2.3	7
4	Gestational diabetes sensitizes mice to future metabolic syndrome that can be relieved by activating CAR. Endocrinology, 2022, , .	1.4	2
5	Empagliflozin restores cardiac metabolic flexibility in diet-induced obese C57BL6/J mice. Current Research in Physiology, 2022, 5, 232-239.	0.8	8
6	Dysregulation of Lipid and Glucose Homeostasis in Hepatocyte-Specific SLC25A34 Knockout Mice. American Journal of Pathology, 2022, 192, 1259-1281.	1.9	2
7	A Fbxo48 inhibitor prevents pAMPKα degradation and ameliorates insulin resistance. Nature Chemical Biology, 2021, 17, 298-306.	3.9	16
8	Tregs facilitate obesity and insulin resistance via a Blimp-1/IL-10 axis. JCI Insight, 2021, 6, .	2.3	54
9	Endogenous Glucose Production in Critical Illness. Nutrition in Clinical Practice, 2021, 36, 344-359.	1.1	15
10	Lactate oxidative phosphorylation by annulus fibrosus cells: evidence for lactate-dependent metabolic symbiosis in intervertebral discs. Arthritis Research and Therapy, 2021, 23, 145.	1.6	13
11	Urolithin A Protects Chondrocytes From Mechanical Overloading-Induced Injuries. Frontiers in Pharmacology, 2021, 12, 703847.	1.6	12
12	Liver-specific Prkn knockout mice are more susceptible to diet-induced hepatic steatosis and insulin resistance. Molecular Metabolism, 2020, 41, 101051.	3.0	27
13	Germinal center B cells selectively oxidize fatty acids for energy while conducting minimal glycolysis. Nature Immunology, 2020, 21, 331-342.	7.0	172
14	Kelch-like protein 42 is a profibrotic ubiquitin E3 ligase involved in systemic sclerosis. Journal of Biological Chemistry, 2020, 295, 4171-4180.	1.6	12
15	Slc20a1/Pit1 and Slc20a2/Pit2 are essential for normal skeletal myofiber function and survival. Scientific Reports, 2020, 10, 3069.	1.6	12
16	Sustained mitochondrial biogenesis is essential to maintain caloric restriction-induced beige adipocytes. Metabolism: Clinical and Experimental, 2020, 107, 154225.	1.5	20
17	The RNFT2/IL-3RÎ \pm axis regulates IL-3 signaling and innate immunity. JCI Insight, 2020, 5, .	2.3	16
18	A big-data approach to understanding metabolic rate and response to obesity in laboratory mice. ELife, 2020, 9, .	2.8	54

#	Article	IF	CITATIONS
19	Defective HNF4alpha-dependent gene expression as a driver of hepatocellular failure in alcoholic hepatitis. Nature Communications, 2019, 10, 3126.	5.8	124
20	The Role of NADPH Oxidases in the Etiology of Obesity and Metabolic Syndrome: Contribution of Individual Isoforms and Cell Biology. Antioxidants and Redox Signaling, 2019, 31, 687-709.	2.5	52
21	Therapeutic Effects of Endogenous Incretin Hormones and Exogenous Incretin-Based Medications in Sepsis. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 5274-5284.	1.8	19
22	Antiâ€inflammatory effects of oestrogen mediate the sexual dimorphic response to lipidâ€induced insulin resistance. Journal of Physiology, 2019, 597, 3885-3903.	1.3	48
23	Petite Integration Factor 1 (PIF1) helicase deficiency increases weight gain in Western diet-fed female mice without increased inflammatory markers or decreased glucose clearance. PLoS ONE, 2019, 14, e0203101.	1.1	7
24	The Transcriptional Regulator Id2 Is Critical for Adipose-Resident Regulatory T Cell Differentiation, Survival, and Function. Journal of Immunology, 2019, 203, 658-664.	0.4	27
25	Adropin reduces blood glucose levels in mice by limiting hepatic glucose production. Physiological Reports, 2019, 7, e14043.	0.7	34
26	Cardiac myocyte KLF5 regulates body weight via alteration of cardiac FGF21. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2125-2137.	1.8	13
27	Shear stress and oxygen availability drive differential changes in opossum kidney proximal tubule cell metabolism and endocytosis. Traffic, 2019, 20, 448-459.	1.3	34
28	Adipose glucocorticoid action influences wholeâ€body metabolism <i>via</i> modulation of hepatic insulin action. FASEB Journal, 2019, 33, 8174-8185.	0.2	12
29	Hepatocyte-Specific Ablation or Whole-Body Inhibition of Xanthine Oxidoreductase in Mice Corrects Obesity-Induced Systemic Hyperuricemia Without Improving Metabolic Abnormalities. Diabetes, 2019, 68, 1221-1229.	0.3	25
30	Adropin treatment restores cardiac glucose oxidation in pre-diabetic obese mice. Journal of Molecular and Cellular Cardiology, 2019, 129, 174-178.	0.9	41
31	Hepatic insulin sensitivity is improved in highâ€fat dietâ€fed <i>Park2</i> knockout mice in association with increased hepatic AMPK activation and reduced steatosis. Physiological Reports, 2019, 7, e14281.	0.7	9
32	KIAA0317 regulates pulmonary inflammation through SOCS2 degradation. JCI Insight, 2019, 4, .	2.3	13
33	Orbital shaking drives differential changes in OK proximal tubule cell metabolism and endocytosis. FASEB Journal, 2019, 33, 749.6.	0.2	0
34	A Metabolic Basis for Endothelial-to-Mesenchymal Transition. Molecular Cell, 2018, 69, 689-698.e7.	4.5	164
35	Skeletal Muscle–Specific Deletion of MKP-1 Reveals a p38 MAPK/JNK/Akt Signaling Node That Regulates Obesity-Induced Insulin Resistance. Diabetes, 2018, 67, 624-635.	0.3	63
36	Adipocyte JAK2 Regulates Hepatic Insulin Sensitivity Independently of Body Composition, Liver Lipid Content, and Hepatic Insulin Signaling. Diabetes, 2018, 67, 208-221.	0.3	19

#	Article	IF	CITATIONS
37	The protein acetylase GCN5L1 modulates hepatic fatty acid oxidation activity via acetylation of the mitochondrial β-oxidation enzyme HADHA. Journal of Biological Chemistry, 2018, 293, 17676-17684.	1.6	62
38	Nocturnal Hypoxia Improves Glucose Disposal, Decreases Mitochondrial Efficiency, and Increases Reactive Oxygen Species in the Muscle and Liver of C57BL/6J Mice Independent of Weight Change. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-12.	1.9	10
39	SGLT2 knockout prevents hyperglycemia and is associated with reduced pancreatic β-cell death in genetically obese mice. Islets, 2018, 10, 181-189.	0.9	12
40	Insulin Regulates Glycogen Synthesis in Human Endometrial Glands Through Increased GYS2. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 2843-2850.	1.8	16
41	Adropin regulates pyruvate dehydrogenase in cardiac cells via a novel GPCR-MAPK-PDK4 signaling pathway. Redox Biology, 2018, 18, 25-32.	3.9	66
42	17α-Estradiol Alleviates Age-related Metabolic and Inflammatory Dysfunction in Male Mice Without Inducing Feminization. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 3-15.	1.7	91
43	Mitochondrial-Targeted Catalase Protects Against High-Fat Diet–Induced Muscle Insulin Resistance by Decreasing Intramuscular Lipid Accumulation. Diabetes, 2017, 66, 2072-2081.	0.3	45
44	A controlledâ€release mitochondrial protonophore reverses hypertriglyceridemia, nonalcoholic steatohepatitis, and diabetes in lipodystrophic mice. FASEB Journal, 2017, 31, 2916-2924.	0.2	35
45	Hepatic inositol 1,4,5 trisphosphate receptor type 1 mediates fatty liver. Hepatology Communications, 2017, 1, 23-35.	2.0	56
46	Retinol saturase modulates lipid metabolism and the production of reactive oxygen species. Archives of Biochemistry and Biophysics, 2017, 633, 93-102.	1.4	31
47	Adipocyte JAK2 mediates growth hormone–induced hepatic insulin resistance. JCI Insight, 2017, 2, e91001.	2.3	31
48	Reduced intestinal lipid absorption and body weight-independent improvements in insulin sensitivity in high-fat diet-fed <i>Park2</i> knockout mice. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E105-E116.	1.8	12
49	CrossTalk opposing view: Intramyocellular ceramide accumulation does not modulate insulin resistance. Journal of Physiology, 2016, 594, 3171-3174.	1.3	26
50	CD301b + Mononuclear Phagocytes Maintain Positive Energy Balance through Secretion of Resistin-like Molecule Alpha. Immunity, 2016, 45, 583-596.	6.6	44
51	MARCH1 regulates insulin sensitivity by controlling cell surface insulin receptor levels. Nature Communications, 2016, 7, 12639.	5.8	66
52	Rebuttal from Max C. Petersen and Michael J. Jurczak. Journal of Physiology, 2016, 594, 3177-3178.	1.3	0
53	Hypophosphatemia promotes lower rates of muscle ATP synthesis. FASEB Journal, 2016, 30, 3378-3387.	0.2	70
54	Secondâ€generation antisense oligonucleotides against β atenin protect mice against dietâ€induced hepatic steatosis and hepatic and peripheral insulin resistance. FASEB Journal, 2016, 30, 1207-1217.	0.2	20

#	Article	IF	CITATIONS
55	Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2212-2217.	3.3	129
56	Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance. Journal of Clinical Investigation, 2016, 126, 4361-4371.	3.9	173
57	Macrophage-specific de Novo Synthesis of Ceramide Is Dispensable for Inflammasome-driven Inflammation and Insulin Resistance in Obesity. Journal of Biological Chemistry, 2015, 290, 29402-29413.	1.6	50
58	Insulin-independent regulation of hepatic triglyceride synthesis by fatty acids. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1143-1148.	3.3	176
59	Hepatic Acetyl CoA Links Adipose Tissue Inflammation to Hepatic Insulin Resistance and Type 2 Diabetes. Cell, 2015, 160, 745-758.	13.5	547
60	Acetylation of TUG Protein Promotes the Accumulation of GLUT4 Glucose Transporters in an Insulin-responsive Intracellular Compartment. Journal of Biological Chemistry, 2015, 290, 4447-4463.	1.6	46
61	Reply to Constantin-Teodosiu et al.: Mice with genetic PDH activation are not protected from high-fat diet–induced muscle insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E825-E825.	3.3	3
62	Hepatic insulin resistance and increased hepatic glucose production in mice lacking Fgf21. Journal of Endocrinology, 2015, 226, 207-217.	1.2	41
63	Endothelial Uncoupling Protein 2 Regulates Mitophagy and Pulmonary Hypertension During Intermittent Hypoxia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1166-1178.	1.1	99
64	ApoA5 knockdown improves whole-body insulin sensitivity in high-fat-fed mice by reducing ectopic lipid content. Journal of Lipid Research, 2015, 56, 526-536.	2.0	45
65	An ERK/Cdk5 axis controls the diabetogenic actions of PPARÎ ³ . Nature, 2015, 517, 391-395.	13.7	251
66	Hepatic Mitogen-Activated Protein Kinase Phosphatase 1 Selectively Regulates Glucose Metabolism and Energy Homeostasis. Molecular and Cellular Biology, 2015, 35, 26-40.	1.1	69
67	Prevention of diet-induced hepatic steatosis and hepatic insulin resistance by second generation antisense oligonucleotides targeted to the longevity gene mIndy (Slc13a5). Aging, 2015, 7, 1086-1093.	1.4	34
68	The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells. Nucleic Acids Research, 2014, 42, 13799-13811.	6.5	218
69	PKCλ Haploinsufficiency Prevents Diabetes by a Mechanism Involving Alterations in Hepatic Enzymes. Molecular Endocrinology, 2014, 28, 1097-1107.	3.7	10
70	Genetic activation of pyruvate dehydrogenase alters oxidative substrate selection to induce skeletal muscle insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16508-16513.	3.3	50
71	Inositol 1,4,5-trisphosphate receptor type II (InsP ₃ R-II) is reduced in obese mice, but metabolic homeostasis is preserved in mice lacking InsP ₃ R-II. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E1057-E1064.	1.8	18
72	Ablation of PRDM16 and Beige Adipose Causes Metabolic Dysfunction and a Subcutaneous to Visceral Fat Switch. Cell, 2014, 156, 304-316.	13.5	719

#	Article	IF	CITATIONS
73	Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature, 2014, 510, 542-546.	13.7	989
74	Cyclin D1–Cdk4 controls glucose metabolism independently of cell cycle progression. Nature, 2014, 510, 547-551.	13.7	198
75	Muscle-specific activation of Ca2+/calmodulin-dependent protein kinase IV increases whole-body insulin action in mice. Diabetologia, 2014, 57, 1232-1241.	2.9	12
76	Targeting Pyruvate Carboxylase Reduces Gluconeogenesis and Adiposity and Improves Insulin Resistance. Diabetes, 2013, 62, 2183-2194.	0.3	107
77	PKM2 Isoform-Specific Deletion Reveals a Differential Requirement for Pyruvate Kinase in Tumor Cells. Cell, 2013, 155, 397-409.	13.5	429
78	Reversal of Hypertriglyceridemia, Fatty Liver Disease, and Insulin Resistance by a Liver-Targeted Mitochondrial Uncoupler. Cell Metabolism, 2013, 18, 740-748.	7.2	190
79	Role of caspase-1 in regulation of triglyceride metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4810-4815.	3.3	64
80	Cellular Mechanism by Which Estradiol Protects Female Ovariectomized Mice From High-Fat Diet-Induced Hepatic and Muscle Insulin Resistance. Endocrinology, 2013, 154, 1021-1028.	1.4	154
81	Cellular Mechanisms by Which FGF21 Improves Insulin Sensitivity in Male Mice. Endocrinology, 2013, 154, 3099-3109.	1.4	184
82	Saturated and unsaturated fat induce hepatic insulin resistance independently of TLR-4 signaling and ceramide synthesis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12780-12785.	3.3	85
83	CGI-58 knockdown sequesters diacylglycerols in lipid droplets/ER-preventing diacylglycerol-mediated hepatic insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1869-1874.	3.3	137
84	Dissociation of Inositol-requiring Enzyme (IRE1α)-mediated c-Jun N-terminal Kinase Activation from Hepatic Insulin Resistance in Conditional X-box-binding Protein-1 (XBP1) Knock-out Mice. Journal of Biological Chemistry, 2012, 287, 2558-2567.	1.6	132
85	The Deacetylase Sirt6 Activates the Acetyltransferase GCN5 and Suppresses Hepatic Gluconeogenesis. Molecular Cell, 2012, 48, 900-913.	4.5	246
86	Thyroid Hormone Receptor-α Gene Knockout Mice Are Protected from Diet-Induced Hepatic Insulin Resistance. Endocrinology, 2012, 153, 583-591.	1.4	66
87	Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature, 2012, 482, 179-185.	13.7	2,026
88	Development of insulin resistance in mice lacking PGC-1α in adipose tissues. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9635-9640.	3.3	248
89	Deletion of the Mammalian INDY Homolog Mimics Aspects of Dietary Restriction and Protects against Adiposity and Insulin Resistance in Mice. Cell Metabolism, 2011, 14, 184-195.	7.2	193
90	Dissociation of the Glucose and Lipid Regulatory Functions of FoxO1 by Targeted Knockin of Acetylation-Defective Alleles in Mice. Cell Metabolism, 2011, 14, 587-597.	7.2	60

#	Article	IF	CITATIONS
91	Antidiabetic actions of a non-agonist PPARÎ ³ ligand blocking Cdk5-mediated phosphorylation. Nature, 2011, 477, 477-481.	13.7	484
92	Apolipoprotein CIII overexpressing mice are predisposed to dietâ€induced hepatic steatosis and hepatic insulin resistance. Hepatology, 2011, 54, 1650-1660.	3.6	114
93	Tumor Progression Locus 2 (TPL2) Regulates Obesity-Associated Inflammation and Insulin Resistance. Diabetes, 2011, 60, 1168-1176.	0.3	47
94	SGLT2 Deletion Improves Glucose Homeostasis and Preserves Pancreatic Î ² -Cell Function. Diabetes, 2011, 60, 890-898.	0.3	197
95	Hepatic insulin resistance in mice with hepatic overexpression of diacylglycerol acyltransferase 2. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5748-5752.	3.3	139
96	Influence of the Hepatic Eukaryotic Initiation Factor 2α (eIF2α) Endoplasmic Reticulum (ER) Stress Response Pathway on Insulin-mediated ER Stress and Hepatic and Peripheral Glucose Metabolism. Journal of Biological Chemistry, 2011, 286, 36163-36170.	1.6	65
97	Generation of a Dominantâ€Negative Glycogen Targeting Subunit for Protein Phosphataseâ€1. Obesity, 2010, 18, 1881-1887.	1.5	2
98	A high-fat, ketogenic diet causes hepatic insulin resistance in mice, despite increasing energy expenditure and preventing weight gain. American Journal of Physiology - Endocrinology and Metabolism, 2010, 299, E808-E815.	1.8	174
99	Enhanced glycogen metabolism in adipose tissue decreases triglyceride mobilization. American Journal of Physiology - Endocrinology and Metabolism, 2010, 299, E117-E125.	1.8	10
100	Stranger in a strange land: Roles of glycogen turnover in adipose tissue metabolism. Molecular and Cellular Endocrinology, 2010, 318, 54-60.	1.6	28
101	Targeted Expression of Catalase to Mitochondria Prevents Age-Associated Reductions in Mitochondrial Function and Insulin Resistance. Cell Metabolism, 2010, 12, 668-674.	7.2	274
102	The Role of Peroxisome Proliferator-Activated Receptor Î ³ Coactivator-1 Î ² in the Pathogenesis of Fructose-Induced Insulin Resistance. Cell Metabolism, 2009, 9, 252-264.	7.2	179
103	The role of protein translocation in the regulation of glycogen metabolism. Journal of Cellular Biochemistry, 2008, 104, 435-443.	1.2	15
104	Transgenic overexpression of protein targeting to glycogen markedly increases adipocytic glycogen storage in mice. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E952-E963.	1.8	36
105	Oxidative stress and dysregulation of NAD(P)H oxidase and antioxidant enzymes in diet-induced metabolic syndrome. Metabolism: Clinical and Experimental, 2006, 55, 928-934.	1.5	268
106	Glycogen branches out: new perspectives on the role of glycogen metabolism in the integration of metabolic pathways. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E1-E8.	1.8	137
107	A high-fat, refined-carbohydrate diet induces endothelial dysfunction and oxidant/antioxidant imbalance and depresses NOS protein expression. Journal of Applied Physiology, 2005, 98, 203-210.	1.2	122