Guibin Jiang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5427668/guibin-jiang-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

577	19,219	67	111
papers	citations	h-index	g-index
622	23,979 ext. citations	9.2	7.21
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
577	Computational Insights into the Allosteric Effect and Dynamic Structural Features of the SARS-COV-2 Spike Protein <i>Chemistry - A European Journal</i> , 2022 , e202200158	4.8	
576	Identification of two-dimensional copper signatures in human blood for bladder cancer with machine learning <i>Chemical Science</i> , 2022 , 13, 1648-1656	9.4	2
575	Trophic Magnification of Short-Chain Per- and Polyfluoroalkyl Substances in a Terrestrial Food Chain from the Tibetan Plateau. <i>Environmental Science and Technology Letters</i> , 2022 , 9, 147-152	11	2
574	Data-Driven Machine Learning in Environmental Pollution: Gains and Problems <i>Environmental Science & Environmental &</i>	10.3	7
573	Co-exposure and health risks of several typical endocrine disrupting chemicals in general population in eastern China. <i>Environmental Research</i> , 2022 , 204, 112366	7.9	0
572	3D printing of TiO nano particles containing macrostructures for As(III) removal in water <i>Science of the Total Environment</i> , 2022 , 152754	10.2	1
571	Occurrence, spatial distribution and ecological risk assessment of phthalate esters in water, soil and sediment from Yangtze River Delta, China. <i>Science of the Total Environment</i> , 2022 , 806, 150966	10.2	2
570	Phase transformation of silica particles in coal and biomass combustion processes. <i>Environmental Pollution</i> , 2022 , 292, 118312	9.3	2
569	Several typical endocrine-disrupting chemicals in human urine from general population in China: Regional and demographic-related differences in exposure risk. <i>Journal of Hazardous Materials</i> , 2022 , 424, 127489	12.8	6
568	Research progress on distribution, sources, identification, toxicity, and biodegradation of microplastics in the ocean, freshwater, and soil environment. <i>Frontiers of Environmental Science and Engineering</i> , 2022 , 16, 1	5.8	19
567	Decreased bioavailability of both inorganic mercury and methylmercury in anaerobic sediments by sorption on iron sulfide nanoparticles. <i>Journal of Hazardous Materials</i> , 2022 , 424, 127399	12.8	2
566	Dithizone-functionalized C online solid-phase extraction-HPLC-ICP-MS for speciation of ultra-trace organic and inorganic mercury in cereals and environmental samples <i>Journal of Environmental Sciences</i> , 2022 , 115, 403-410	6.4	3
565	Levels, distributions, and sources of legacy and novel per- and perfluoroalkyl substances (PFAS) in the topsoil of Tianjin, China <i>Journal of Environmental Sciences</i> , 2022 , 112, 71-81	6.4	5
564	Ultrasensitive determination of 39 parent and emerging halogenated polycyclic aromatic hydrocarbons in human serum <i>Analytical Methods</i> , 2022 ,	3.2	1
563	Enhanced hand-to-mouth exposure from hand sanitizers during the COVID-19 pandemic: a case study of triclosan. <i>Science Bulletin</i> , 2022 , 67, 995-995	10.6	0
562	Surface and interface control of black phosphorus. <i>CheM</i> , 2022 , 8, 632-662	16.2	2
561	Organophosphate esters in Arctic air from 2011 to 2019: Concentrations, temporal trends, and potential sources <i>Journal of Hazardous Materials</i> , 2022 , 434, 128872	12.8	2

560	Molecular characterization of nitrogen-containing organic compounds in fractionated atmospheric humic-like substances (HULIS) and its relationship with optical properties <i>Science of the Total Environment</i> , 2022 , 155043	10.2	O
559	A high-throughput assay for screening the abilities of per- and polyfluoroalkyl substances in inducing plasma kallikrein-like activity <i>Ecotoxicology and Environmental Safety</i> , 2022 , 234, 113381	7	
558	Tetrabromobisphenol A perturbs cell fate decisions via BMP signaling in the early embryonic development of zebrafish. <i>Journal of Hazardous Materials</i> , 2022 , 430, 128512	12.8	
557	Photocatalytic degradation of pharmaceuticals by pore-structured graphitic carbon nitride with carbon vacancy in water: Identification of intermediate degradants and effects of active species <i>Science of the Total Environment</i> , 2022 , 153845	10.2	3
556	A short review of human exposure to antibiotics based on urinary biomonitoring <i>Science of the Total Environment</i> , 2022 , 830, 154775	10.2	О
555	Exploring the origin of efficient adsorption of poly- and perfluoroalkyl substances in household point-of-use water purifiers: Deep insights from a joint experimental and computational study <i>Science of the Total Environment</i> , 2022 , 154988	10.2	3
554	Occurrence, Temporal Variation (2010 2 018), Distribution, and Source Appointment of Per- and Polyfluoroalkyl Substances (PFAS) in Mollusks from the Bohai Sea, China. <i>ACS ES&T Water</i> , 2022 , 2, 195-	205	1
553	Rare and misincorporated DNA N-methyladenine is a hallmark of cytotoxic stresses for selectively stimulating the stemness and proliferation of glioblastoma cells <i>Cell Discovery</i> , 2022 , 8, 39	22.3	1
552	Loss and Increase of the Electron Exchange Capacity of Natural Organic Matter during Its Reduction and Reoxidation: The Role of Quinone and Nonquinone Moieties <i>Environmental Science & Environmental Science</i>	10.3	1
551	Disturbed Gut-Liver axis indicating oral exposure to polystyrene microplastic potentially increases the risk of insulin resistance <i>Environment International</i> , 2022 , 164, 107273	12.9	4
550	Inflammation and accompanied disrupted hematopoiesis in adult mouse induced by rare earth element nanoparticles <i>Science of the Total Environment</i> , 2022 , 155416	10.2	
549	A pilot evaluation on the toxicokinetics and bioaccumulation of polychlorinated naphthalenes in laying hens <i>Science of the Total Environment</i> , 2022 , 155454	10.2	O
548	Constructing an MCF-7 breast cancer cell-based transient transfection assay for screening RARH (Ant)agonistic activities of emerging phenolic compounds <i>Journal of Hazardous Materials</i> , 2022 , 435, 129024	12.8	О
547	Effect-directed analysis of estrogenic chemicals in sediments from an electronic-waste recycling area <i>Environmental Pollution</i> , 2022 , 306, 119369	9.3	O
546	Occurrence of synthetic phenolic antioxidants in foodstuffs from ten provinces in China and its implications for human dietary exposure <i>Food and Chemical Toxicology</i> , 2022 , 113134	4.7	1
545	Environmental obesogen: More considerations about the potential cause of obesity epidemic <i>Ecotoxicology and Environmental Safety</i> , 2022 , 239, 113613	7	
544	Exposure to short-, medium-, and long-chain chlorinated paraffins for infant via cow infant formula, goat infant formula and baby food. <i>Food and Chemical Toxicology</i> , 2022 , 113178	4.7	О
543	Assessment of perfluorohexane sulfonic acid (PFHxS)-related compounds degradation potential: Computational and experimental approaches. <i>Journal of Hazardous Materials</i> , 2022 , 436, 129240	12.8	1

542	Porous covalent organic frameworks-improved solid phase microextraction ambient mass spectrometry for ultrasensitive analysis of tetrabromobisphenol-A analogs. <i>Chinese Chemical Letters</i> , 2021 ,	8.1	2
541	Data mining of natural hazard biomarkers and metabolites with integrated metabolomic tools. Journal of Hazardous Materials, 2021 , 427, 127912	12.8	O
540	Identification of mercury-containing nanoparticles in the liver and muscle of cetaceans. <i>Journal of Hazardous Materials</i> , 2021 , 424, 127759	12.8	2
539	Insights into the toxicokinetic, tissue distribution and maternal transfer of polychlorinated dibenzo-p-dioxins/dibenzofurans in laying hens fed with dioxin-associated dietary. <i>Science of the Total Environment</i> , 2021 , 816, 151664	10.2	1
538	Characterization of nanoparticles using coupled gel immobilization and label-free optical imaging. <i>Chemical Communications</i> , 2021 , 57, 13016-13019	5.8	O
537	Concentration profiles of a typical ultraviolet filter benzophenone-3 and its derivatives in municipal sewage sludge in China: Risk assessment in sludge-amended soil <i>Science of the Total Environment</i> , 2021 , 811, 152329	10.2	O
536	First report on hydroxylated and methoxylated polybrominated diphenyl ethers in terrestrial environment from the Arctic and Antarctica. <i>Journal of Hazardous Materials</i> , 2021 , 424, 127644	12.8	О
535	Temporal Trends of Short- and Medium-Chain Chlorinated Paraffins in Mollusks from the Chinese Bohai Sea during 2011 2 018. <i>ACS ES&T Water</i> , 2021 , 1, 765-773		O
534	Developmental Toxicity of Few-Layered Black Phosphorus toward Zebrafish. <i>Environmental Science</i> & <i>amp; Technology</i> , 2021 , 55, 1134-1144	10.3	6
533	Medium- and Short-Chain Chlorinated Paraffins in Mature Maize Plants and Corresponding Agricultural Soils. <i>Environmental Science & Environmental Scie</i>	10.3	5
532	COVID-19-Induced Lockdowns Indicate the Short-Term Control Effect of Air Pollutant Emission in 174 Cities in China. <i>Environmental Science & Environmental Science & Environme</i>	10.3	7
531	Unified Probability Distribution and Dynamics of Lead Contents in Human Erythrocytes Revealed by Single-Cell Analysis. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	2
530	Recognition and Prioritization of Chemical Mixtures and Transformation Products in Chinese Estuarine Waters by Suspect Screening Analysis. <i>Environmental Science & Environmental Science & Environmen</i>	0 ई-9 31	7 ⁸
529	Two Typical Glycosylated Metabolites of Tetrabromobisphenol A Formed in Plants: Excretion and Deglycosylation in Plant Root Zones. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 313-319	11	5
528	Reduction of Ionic Silver by Sulfur Dioxide as a Source of Silver Nanoparticles in the Environment. <i>Environmental Science & Environmental Science & E</i>	10.3	6
527	The occurrence of PFAS in human placenta and their binding abilities to human serum albumin and organic anion transporter 4. <i>Environmental Pollution</i> , 2021 , 273, 116460	9.3	13
526	High-Throughput Single-Cell Analysis Reveals the Crosstalk between Nanoparticle-Induced Cell Responses. <i>Environmental Science & Environmental Science</i>	10.3	2
525	Katabatic Wind and Sea-Ice Dynamics Drive Isotopic Variations of Total Gaseous Mercury on the Antarctic Coast. <i>Environmental Science & Environmental </i>	10.3	2

(2021-2021)

524	Nanotechnology: new opportunities for the development of patch-clamps. <i>Journal of Nanobiotechnology</i> , 2021 , 19, 97	9.4	8
523	Covalent organic frameworks with tunable pore sizes enhanced solid-phase microextraction direct ionization mass spectrometry for ultrasensitive and rapid analysis of tetrabromobisphenol A derivatives. <i>Science of the Total Environment</i> , 2021 , 764, 144388	10.2	10
522	Identification, Quantification, and Imaging of the Biodistribution of Soot Particles by Mass Spectral Fingerprinting. <i>Analytical Chemistry</i> , 2021 , 93, 6665-6672	7.8	1
521	Chirality of gold nanocluster affects its interaction with coagulation factor XII <i>NanoImpact</i> , 2021 , 22, 100321	5.6	2
520	Temporal Trends and Sources of PCBs in Mollusks from the Bohai Sea between 2011 and 2018. <i>ACS ES&T Water</i> , 2021 , 1, 1587-1595		
519	Airborne particulate matters induce thrombopoiesis from megakaryocytes through regulating mitochondrial oxidative phosphorylation. <i>Particle and Fibre Toxicology</i> , 2021 , 18, 19	8.4	2
518	A Critical Review on Transplacental Transfer of Per- and Polyfluoroalkyl Substances: Prenatal Exposure Levels, Characteristics, and Mechanisms. <i>Environmental Science & Emp; Technology</i> , 2021 ,	10.3	8
517	3D Printing-Induced Fine Particle and Volatile Organic Compound Emission: An Emerging Health Risk. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 616-625	11	6
516	Nanoscale cobalt-based metal-organic framework impairs learning and memory ability without noticeable general toxicity: First in vivo evidence. <i>Science of the Total Environment</i> , 2021 , 771, 145063	10.2	8
515	Toxicity of Tetrabromobisphenol A and Its Derivative in the Mouse Liver Following Oral Exposure at Environmentally Relevant Levels. <i>Environmental Science & Environmental Sci</i>	10.3	3
514	Identification and interaction mechanism of protein corona on silver nanoparticles with different sizes and the cellular responses. <i>Journal of Hazardous Materials</i> , 2021 , 414, 125582	12.8	11
513	Temporal trends of novel brominated flame retardants in mollusks from the Chinese Bohai Sea (2011-2018). <i>Science of the Total Environment</i> , 2021 , 777, 146101	10.2	1
512	Migration mechanism and risk assessment of chlorinated paraffins in highly polluted Ya'Er lake area, China. <i>Environmental Pollution</i> , 2021 , 281, 117015	9.3	9
511	N-methyladenine is incorporated into mammalian genome by DNA polymerase. <i>Cell Research</i> , 2021 , 31, 94-97	24.7	17
510	Long-range atmospheric transport and alpine condensation of short-chain chlorinated paraffins on the southeastern Tibetan Plateau. <i>Journal of Environmental Sciences</i> , 2021 , 99, 275-280	6.4	4
509	Multiple antibodied based immunoaffinity columns preparation for the simultaneous analysis of deoxynivalenol and T-2 toxin in cereals by liquid chromatography tandem mass spectrometry. <i>Food Chemistry</i> , 2021 , 337, 127802	8.5	8
508	4-Hexylphenol influences adipogenic differentiation and hepatic lipid accumulation in litro. <i>Environmental Pollution</i> , 2021 , 268, 115635	9.3	5
507	Long-Term Investigation of the Temporal Trends and Gas/Particle Partitioning of Short- and Medium-Chain Chlorinated Paraffins in Ambient Air of King George Island, Antarctica. Environmental Science & Environmental Science	10.3	11

506	Enriched isotope tracing to reveal the fractionation and lability of legacy and newly introduced cadmium under different amendments. <i>Journal of Hazardous Materials</i> , 2021 , 403, 123975	12.8	3
505	Tetrabromobisphenol A induces THR Emediated inflammation and uterine injury in mice at environmentally relevant exposure concentrations. <i>Journal of Hazardous Materials</i> , 2021 , 407, 124859	12.8	5
504	Mass spectrometry for multi-dimensional characterization of natural and synthetic materials at the nanoscale. <i>Chemical Society Reviews</i> , 2021 , 50, 5243-5280	58.5	7
503	High Molecular Diversity of Organic Nitrogen in Urban Snow in North China. <i>Environmental Science & Environmental Science</i>	10.3	6
502	Harnessing synchronous photothermal and photocatalytic effects of cryptomelane-type MnO2 nanowires towards clean water production. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 2414-2420	13	9
501	Occurrence and Distribution of Disinfection Byproducts in Domestic Wastewater Effluent, Tap Water, and Surface Water during the SARS-CoV-2 Pandemic in China. <i>Environmental Science & Environmental Science & Technology</i> , 2021 , 55, 4103-4114	10.3	22
500	Accumulation and influencing factors of novel brominated flame retardants in soil and vegetation from Fildes Peninsula, Antarctica. <i>Science of the Total Environment</i> , 2021 , 756, 144088	10.2	2
499	Evidence of Foodborne Transmission of the Coronavirus (COVID-19) through the Animal Products Food Supply Chain. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	14
498	Compartmentalization and Excretion of 2,4,6-Tribromophenol Sulfation and Glycosylation Conjugates in Rice Plants. <i>Environmental Science & Environmental Science & Environment</i>	10.3	4
497	Graphene Quantum Dots Disrupt Embryonic Stem Cell Differentiation by Interfering with the Methylation Level of 2. <i>Environmental Science & Emp; Technology</i> , 2021 , 55, 3144-3155	10.3	5
496	Atmospheric concentrations and temporal trends of polychlorinated biphenyls and organochlorine pesticides in the Arctic during 2011-2018. <i>Chemosphere</i> , 2021 , 267, 128859	8.4	4
495	Increase of nitrooxy organosulfates in firework-related urban aerosols during Chinese New Year's Eve. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 11453-11465	6.8	5
494	Bisphenol S Promotes the Formation of Visceral Fat in Mice. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 699-704	11	0
493	Mycotoxins: An Overview of Toxicity, Metabolism, and Analysis in Food. <i>Journal of Agricultural and Food Chemistry</i> , 2021 , 69, 7817-7830	5.7	11
492	Modeling of Flame Retardants in Typical Urban Indoor Environments in China during 2010-2030: Influence of Policy and Decoration and Implications for Human Exposure. <i>Environmental Science & Environmental Science</i>	10.3	8
491	Resurgence of Sandstorms Complicates China's Air Pollution Situation. <i>Environmental Science & Environmental Science</i>	10.3	0
490	Mercury Inputs Into Eastern China Seas Revealed by Mercury Isotope Variations in Sediment Cores. Journal of Geophysical Research: Oceans, 2021 , 126, e2020JC016891	3.3	
489	Altered immune cells in the liver and spleen of mice as a typical immune response to graphene oxide exposure. <i>Materials and Design</i> , 2021 , 206, 109802	8.1	1

(2021-2021)

488	Percutaneous penetration and dermal exposure risk assessment of chlorinated paraffins. <i>Journal of Hazardous Materials</i> , 2021 , 416, 126178	12.8	4
487	Inherited and acquired corona of coronavirus in the host: Inspiration from the biomolecular corona of nanoparticles. <i>Nano Today</i> , 2021 , 39, 101161	17.9	3
486	Surface charge-dependent mitochondrial response to similar intracellular nanoparticle contents at sublethal dosages. <i>Particle and Fibre Toxicology</i> , 2021 , 18, 36	8.4	0
485	Dark Reduction of Mercury by Microalgae-Associated Aerobic Bacteria in Marine Environments. <i>Environmental Science & Environmental Science & Environme</i>	10.3	О
484	Human internal exposure to organophosphate esters: A short review of urinary monitoring on the basis of biological metabolism research. <i>Journal of Hazardous Materials</i> , 2021 , 418, 126279	12.8	8
483	Aging and phytoavailability of newly introduced and legacy cadmium in paddy soil and their bioaccessibility in rice grain distinguished by enriched isotope tracing. <i>Journal of Hazardous Materials</i> , 2021 , 417, 125998	12.8	2
482	The occurrence of per- and polyfluoroalkyl substances (PFASs) in fluoropolymer raw materials and products made in China. <i>Journal of Environmental Sciences</i> , 2021 , 107, 77-86	6.4	0
481	Analysis, occurrence, toxicity and environmental health risks of synthetic phenolic antioxidants: A review. <i>Environmental Research</i> , 2021 , 201, 111531	7.9	16
480	Recent advances in data-mining techniques for measuring transformation products by high-resolution mass spectrometry. <i>TrAC - Trends in Analytical Chemistry</i> , 2021 , 143, 116409	14.6	4
479	The effect of anthropogenic activities on the environmental fate of chlorinated paraffins in surface soil in an urbanized zone of northern China. <i>Environmental Pollution</i> , 2021 , 288, 117766	9.3	O
478	Legacy and emerging per- and polyfluoroalkyl substances (PFAS) in the Bohai Sea and its inflow rivers. <i>Environment International</i> , 2021 , 156, 106735	12.9	9
477	Adsorption removal of ibuprofen and naproxen from aqueous solution with Cu-doped Mil-101(Fe). <i>Science of the Total Environment</i> , 2021 , 797, 149179	10.2	17
476	Exposure to novel and legacy per- and polyfluoroalkyl substances (PFASs) and associations with type 2 diabetes: A case-control study in East China. <i>Environment International</i> , 2021 , 156, 106637	12.9	10
475	Simultaneous determination of tetra-, penta- and hexachlorobutadienes in shellfish by gas chromatography-triple quadrupole mass spectrometry. <i>Environmental Pollution</i> , 2021 , 289, 117845	9.3	
474	Reevaluation on accumulation and depletion of dioxin-like compounds in eggs of laying hens: Quantification on dietary risk from feed to egg. <i>Science of the Total Environment</i> , 2021 , 801, 149690	10.2	5
473	Novel brominated flame retardants (NBFRs) in soil and moss in Mt. Shergyla, southeast Tibetan Plateau: Occurrence, distribution and influencing factors. <i>Environmental Pollution</i> , 2021 , 291, 118252	9.3	О
472	Data-dependent acquisition based high-resolution mass spectrum for trace Alternaria mycotoxin analysis and sulfated metabolites identification. <i>Food Chemistry</i> , 2021 , 364, 130450	8.5	4
471	Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. <i>Science of the Total Environment</i> , 2021 , 753, 141975	10.2	121

New Insights into Unexpected Severe PM Pollution during the SARS and COVID-19 Pandemic Periods in Beijing <i>Environmental Science & Environmental Sci</i>	10.3	1
Two-Dimensional Silicon Fingerprints Reveal Dramatic Variations in the Sources of Particulate Matter in Beijing during 2013-2017. <i>Environmental Science & Environmental Scien</i>	10.3	7
Short- and medium-chain chlorinated paraffins in multi-environmental matrices in the Tibetan Plateau environment of China: A regional scale study. <i>Environment International</i> , 2020 , 140, 105767	12.9	8
A review of organophosphate flame retardants and plasticizers in the environment: Analysis, occurrence and risk assessment. <i>Science of the Total Environment</i> , 2020 , 731, 139071	10.2	87
Distributions and Congener Group Profiles of Short-Chain and Medium-Chain Chlorinated Paraffins in Cooking Oils in Chinese Markets. <i>Journal of Agricultural and Food Chemistry</i> , 2020 , 68, 7601-7608	5.7	6
Revisiting the forms of trace elements in biogeochemical cycling: Analytical needs and challenges. <i>TrAC - Trends in Analytical Chemistry</i> , 2020 , 129, 115953	14.6	4
Occurrence and distribution of organophosphate esters in the air and soils of Ny-lesund and London Island, Svalbard, Arctic. <i>Environmental Pollution</i> , 2020 , 263, 114495	9.3	16
Occurrence of Mercurous [Hg(I)] Species in Environmental Solid Matrices as Probed by Mild 2-Mercaptoethanol Extraction and HPLC-ICP-MS Analysis. <i>Environmental Science and Technology Letters</i> , 2020 , 7, 482-488	11	6
Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater (a perspective. <i>Environmental Science: Nano</i> , 2020 , 7, 2178-2194	7.1	31
Thyroid Cancer "Epidemic": A Socio-Environmental Health Problem Needs Collaborative Efforts. <i>Environmental Science & Environmental Science & Environm</i>	10.3	5
An Imperative Need for Research on the Role of Environmental Factors in Transmission of Novel Coronavirus (COVID-19). <i>Environmental Science & Environmental Factors in Transmission of Novel Coronavirus (COVID-19). <i>Environmental Science & Environmental Factors in Transmission of Novel Environmental Factors in Transmission of Novel Coronavirus (COVID-19). Environmental Science & Environmental Factors in Transmission of Novel Coronavirus (COVID-19). <i>Environmental Science & Environmental Environme</i></i></i>	10.3	178
Environmetallomics: Systematically investigating metals in environmentally relevant media. <i>TrAC</i> - <i>Trends in Analytical Chemistry</i> , 2020 , 126, 115875	14.6	8
Epitranscriptomic 5-Methylcytosine Profile in PM-induced Mouse Pulmonary Fibrosis. <i>Genomics, Proteomics and Bioinformatics</i> , 2020 , 18, 41-51	6.5	9
Metabolism of SCCPs and MCCPs in Suspension Rice Cells Based on Paired Mass Distance (PMD) Analysis. <i>Environmental Science & Technology</i> , 2020 , 54, 9990-9999	10.3	11
Human impacts on polycyclic aromatic hydrocarbon distribution in Chinese intertidal zones. <i>Nature Sustainability</i> , 2020 , 3, 878-884	22.1	41
Terrestrial mercury transformation in the Tibetan Plateau: New evidence from stable isotopes in upland buzzards. <i>Journal of Hazardous Materials</i> , 2020 , 400, 123211	12.8	3
Complexation of Fe(III)/Catechols in atmospheric aqueous phase and the consequent cytotoxicity assessment in human bronchial epithelial cells (BEAS-2B). <i>Ecotoxicology and Environmental Safety</i> , 2020 , 202, 110898	7	2
Uptake, phytovolatilization, and interconversion of 2,4-dibromophenol and 2,4-dibromoanisole in rice plants. <i>Environment International</i> , 2020 , 142, 105888	12.9	7
	Periods in Beijing Environmental Science & Environme	Periods in Beijing. Environmental Science & Camp; Technology, 2021, Two-Dimensional Silicon Fingerprints Reveal Dramatic Variations in the Sources of Particulate Matter in Beijing during 2013-2017. Environmental Science & Camp; Technology, 2020, 54, 7126-7135 Short- and medium-chain chlorinated paraffins in multi-environmental matrices in the Tibetan Plateau environment of China: A regional scale study. Environment International, 2020, 140, 105767 A review of organophosphate flame retardants and plasticizers in the environment. Analysis, coccurrence and risk assessment. Science of the Total Environment, 2020, 731, 139071 Distributions and Congener Group Profiles of Short-Chain and Medium-Chain Chiorinated Paraffins in Cooking Olls in Chinese Markets. Journal of Agricultural and Food Chemistry, 2020, 68, 7601-7608 Revisiting the forms of trace elements in biogeochemical cycling: Analytical needs and challenges. 17.6C-Trends in Analytical Chemistry, 2020, 129, 115953 Occurrence and distribution of organophosphate esters in the air and soils of Ny-lesund and London Island, Svalbard, Arctic. Environmental Pollution, 2020, 263, 114495 Occurrence of Mercurous [Hg0]) Species in Environmental Science and Technology Letters, 2020, 7, 482-488 Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater ib perspective. Environmental Science: Nano, 2020, 7, 2178-2194 Thyroid Gancer "Epidemic": A Socio-Environmental Health Problem Needs Collaborative Efforts. Environmental Science & Amp; Technology, 2020, 54, 3725-3727 An Imperative Need for Research on the Role of Environmental Factors in Transmission of Novel Coronavirus (COVID-19). Environmental Science & Amp; Technology, 2020, 54, 3725-3727 An Imperative Need for Research on the Role of Environmental Factors in Transmission of Novel Coronavirus (COVID-19). Environmental Science & Amp; Technology, 2020, 54, 9990-9999 Epitranscriptomic 5-Methylcytosine Profile in PM-induced Mouse Pulmonary Fibro

(2020-2020)

452	Concentrations and distribution of novel brominated flame retardants in the atmosphere and soil of Ny-lesund and London Island, Svalbard, Arctic. <i>Journal of Environmental Sciences</i> , 2020 , 97, 180-185	6.4	7
451	Separation and Tracing of Anthropogenic Magnetite Nanoparticles in the Urban Atmosphere. <i>Environmental Science & Description (Commental Science & Description (Comme</i>	10.3	20
450	Response to Comment on "Thyroid Cancer 'Epidemic': A Socio-Environmental Health Problem Needs Collaborative Efforts". <i>Environmental Science & Environmental & Environ</i>	10.3	1
449	Phototransformation of perfluorooctane sulfonamide on natural clay minerals: A likely source of short chain perfluorocarboxylic acids. <i>Journal of Hazardous Materials</i> , 2020 , 392, 122354	12.8	8
448	Novel brominated flame retardants in West Antarctic atmosphere (2011-2018): Temporal trends, sources and chiral signature. <i>Science of the Total Environment</i> , 2020 , 720, 137557	10.2	16
447	Age dependence accumulation of organochlorine pesticides and PAHs in needles with different forest types, southeast Tibetan Plateau. <i>Science of the Total Environment</i> , 2020 , 716, 137176	10.2	6
446	Property-Activity Relationship of Black Phosphorus at the Nano-Bio Interface: From Molecules to Organisms. <i>Chemical Reviews</i> , 2020 , 120, 2288-2346	68.1	73
445	A 3D-printed modularized purification system for rapid, high-throughput MALDI-MS analysis of small-volume biological samples. <i>Chemical Communications</i> , 2020 , 56, 1637-1640	5.8	4
444	Freezing-Induced Bromate Reduction by Dissolved Organic Matter and the Formation of Organobromine Compounds. <i>Environmental Science & Environmental Sc</i>	10.3	10
443	Characterization of Carbonyl Disinfection By-Products During Ozonation, Chlorination, and Chloramination of Dissolved Organic Matters. <i>Environmental Science & Environmental </i>	-2 ¹ 22 7	23
442	Increase of High Molecular Weight Organosulfate With Intensifying Urban Air Pollution in the Megacity Beijing. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2019JD032200	4.4	12
441	Occurrence and Trophic Magnification of Organophosphate Esters in an Antarctic Ecosystem: Insights into the Shift from Legacy to Emerging Pollutants. <i>Journal of Hazardous Materials</i> , 2020 , 396, 122742	12.8	19
440	New evidence for atmospheric mercury transformations in the marine boundary layer from stable mercury isotopes. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 9713-9723	6.8	12
439	Silver nanoparticles induce size-dependent and particle-specific neurotoxicity to primary cultures of rat cerebral cortical neurons. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 198, 110674	7	9
438	A typical derivative and byproduct of tetrabromobisphenol A: Development of novel high-throughput immunoassays and systematic investigation of their distributions in Taizhou, an e-waste recycling area in eastern China. <i>Environmental Pollution</i> , 2020 , 263, 114382	9.3	1
437	Environmental impacts on the transmission and evolution of COVID-19 combing the knowledge of pathogenic respiratory coronaviruses. <i>Environmental Pollution</i> , 2020 , 267, 115621	9.3	9
436	Chemical multi-fingerprinting of exogenous ultrafine particles in human serum and pleural effusion. <i>Nature Communications</i> , 2020 , 11, 2567	17.4	41
435	Cadmium-binding proteins in human blood plasma. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 188, 109896	7	11

434	Transformation and uptake of silver nanoparticles and silver ions in rice plant (Oryza sativa L.): the effect of iron plaque and dissolved iron. <i>Environmental Science: Nano</i> , 2020 , 7, 599-609	7.1	10
433	Serum concentration of bisphenol analogues in pregnant women in China. <i>Science of the Total Environment</i> , 2020 , 707, 136100	10.2	57
432	Metallic Fingerprints of Carbon: Label-Free Tracking and Imaging of Graphene in Plants. <i>Analytical Chemistry</i> , 2020 , 92, 1948-1955	7.8	5
431	Regulation of Cell Uptake and Cytotoxicity by Nanoparticle Core under the Controlled Shape, Size, and Surface Chemistries. <i>ACS Nano</i> , 2020 , 14, 289-302	16.7	38
430	Exposure to organochlorine pesticides and the risk of type 2 diabetes in the population of East China. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 190, 110125	7	26
429	Concentration and distribution of parabens, triclosan, and triclocarban in pregnant woman serum in China. <i>Science of the Total Environment</i> , 2020 , 710, 136390	10.2	16
428	Occurrence and trophic transfer of per- and polyfluoroalkyl substances in an Antarctic ecosystem. <i>Environmental Pollution</i> , 2020 , 257, 113383	9.3	24
427	Tracking Mercury in Individual Using a Capillary Single-Cell Inductively Coupled Plasma Mass Spectrometry Online System. <i>Analytical Chemistry</i> , 2020 , 92, 622-627	7.8	17
426	Cellular Uptake of Few-Layered Black Phosphorus and the Toxicity to an Aquatic Unicellular Organism. <i>Environmental Science & Environmental Science & </i>	10.3	12
425	Bisphenol A and several derivatives exert neural toxicity in human neuron-like cells by decreasing neurite length. <i>Food and Chemical Toxicology</i> , 2020 , 135, 111015	4.7	17
424	Perturbation of Normal Algal Growth by Black Phosphorus Nanosheets: The Role of Degradation. <i>Environmental Science and Technology Letters</i> , 2020 , 7, 35-41	11	10
423	Transformation of 1,1,1,3,8,10,10,10-octachlorodecane in air phase increased by phytogenic volatile organic compounds of pumpkin seedlings. <i>Science of the Total Environment</i> , 2020 , 704, 135455	10.2	1
422	Perturbation of 3-tert-butyl-4-hydroxyanisole in adipogenesis of male mice with normal and high fat diets. <i>Science of the Total Environment</i> , 2020 , 703, 135608	10.2	14
421	Ligand-Sharing-Mediated Synthesis of Intermetallic FeM Clusters Embedded in Ultrathin Fe2O3 Nanosheets. <i>Advanced Functional Materials</i> , 2020 , 30, 1906995	15.6	O
420	Monitoring AuNP Dynamics in the Blood of a Single Mouse Using Single Particle Inductively Coupled Plasma Mass Spectrometry with an Ultralow-Volume High-Efficiency Introduction System. <i>Analytical Chemistry</i> , 2020 , 92, 14872-14877	7.8	3
419	Identification of -Nitrosamines and Nitrogenous Heterocyclic Byproducts during Chloramination of Aromatic Secondary Amine Precursors. <i>Environmental Science & Environmental S</i>	3 ^{10.3}	5
418	Atmospheric organophosphate esters in the Western Antarctic Peninsula over 2014-2018: Occurrence, temporal trend and source implication. <i>Environmental Pollution</i> , 2020 , 267, 115428	9.3	12
417	Bioaccumulation and Trophic Transfer of Polybrominated Diphenyl Ethers and Their Hydroxylated and Methoxylated Analogues in Polar Marine Food Webs. <i>Environmental Science & Environmental Science & E</i>	10.3	6

416	Trends and perspectives in per-and polyfluorinated alkyl substances (PFASs) determination: Faster and broader. <i>TrAC - Trends in Analytical Chemistry</i> , 2020 , 133, 116114	14.6	10
415	Analysis of Organochlorine Pesticide Residues in Various Vegetable Oils Collected in Chinese Markets. <i>Journal of Agricultural and Food Chemistry</i> , 2020 , 68, 14594-14602	5.7	9
414	Historical trends of PCBs and PBDEs as reconstructed in a lake sediment from southern Tibetan Plateau. <i>Journal of Environmental Sciences</i> , 2020 , 98, 31-38	6.4	3
413	Visible Post-Data Analysis Protocol for Natural Mycotoxin Production. <i>Journal of Agricultural and Food Chemistry</i> , 2020 , 68, 9603-9611	5.7	4
412	Binding and Activity of Tetrabromobisphenol A Mono-Ether Structural Analogs to Thyroid Hormone Transport Proteins and Receptors. <i>Environmental Health Perspectives</i> , 2020 , 128, 107008	8.4	11
411	Structure-Oriented Research on the Antiestrogenic Effect of Organophosphate Esters and the Potential Mechanism. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	6
410	Occurrence and human exposure assessment of organophosphate esters in atmospheric PM in the Beijing-Tianjin-Hebei region, China. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 206, 111399	7	5
409	Tetrabromobisphenol A Perturbs Erythropoiesis and Impairs Blood Circulation in Zebrafish Embryos. <i>Environmental Science & Embryos</i> , 2020 , 54, 12998-13007	10.3	8
408	Heterogenous Internalization of Nanoparticles at Ultra-Trace Concentration in Environmental Individual Unicellular Organisms Unveiled by Single-Cell Mass Cytometry. <i>ACS Nano</i> , 2020 , 14, 12828-12	28397	10
407	Occurrence, Distribution, and Human Exposure of Several Endocrine-Disrupting Chemicals in Indoor Dust: A Nationwide Study. <i>Environmental Science & Endocrine Study</i> , 2020 , 54, 11333-11343	10.3	18
406	Post Dioxin Period for Feed: Cocktail Effects of Emerging POPs and Analogues. <i>Environmental Science & Emerging Pops and Analogues</i> . <i>Environmental Science & Environmental Sc</i>	10.3	7
405	Mercury isotope variations within the marine food web of Chinese Bohai Sea: Implications for mercury sources and biogeochemical cycling. <i>Journal of Hazardous Materials</i> , 2020 , 384, 121379	12.8	19
404	Associations between the exposure to persistent organic pollutants and type 2 diabetes in East China: A case-control study. <i>Chemosphere</i> , 2020 , 241, 125030	8.4	14
403	Thermal fragmentation enhanced identification and quantification of polystyrene micro/nanoplastics in complex media. <i>Talanta</i> , 2020 , 208, 120478	6.2	34
402	Chemical Structure-Related Adipogenic Effects of Tetrabromobisphenol A and Its Analogues on 3T3-L1 Preadipocytes. <i>Environmental Science & Environmental Science & Environment</i>	10.3	7
401	High-Throughput Single Cell Analysis Reveals the Heterogeneity of QDots-Induced Response in Macrophages. <i>Environmental Science and Technology Letters</i> , 2020 , 7, 337-342	11	2
400	Occurrences of perfluoroalkyl and polyfluoroalkyl substances in tree bark: Interspecies variability related to chain length. <i>Science of the Total Environment</i> , 2019 , 689, 1388-1395	10.2	6
399	Occurrence, fate and risk assessment of BPA and its substituents in wastewater treatment plant: A review. <i>Environmental Research</i> , 2019 , 178, 108732	7.9	48

398	An Integrated Model for Input and Migration of Mercury in Chinese Coastal Sediments. <i>Environmental Science & Environmental Sc</i>	10.3	26
397	Mercury isotopic compositions of mosses, conifer needles, and surface soils: Implications for mercury distribution and sources in Shergyla Mountain, Tibetan Plateau. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 172, 225-231	7	10
396	A selective adsorption-based separation of low-mass molecules from biological samples towards high-throughput mass spectrometry analysis in a single drop of human whole blood. <i>Talanta</i> , 2019 , 202, 237-243	6.2	2
395	Mass Spectrometry-Based Metabolomics Reveals Occupational Exposure to Per- and Polyfluoroalkyl Substances Relates to Oxidative Stress, Fatty Acid Exidation Disorder, and Kidney Injury in a Manufactory in China. <i>Environmental Science & Emp; Technology</i> , 2019 , 53, 9800-9809	10.3	32
394	Accumulation and fate processes of organochlorine pesticides (OCPs) in soil profiles in Mt. Shergyla, Tibetan Plateau: A comparison on different forest types. <i>Chemosphere</i> , 2019 , 231, 571-578	8.4	12
393	Butylated hydroxyanisole isomers induce distinct adipogenesis in 3T3-L1 cells. <i>Journal of Hazardous Materials</i> , 2019 , 379, 120794	12.8	23
392	Multiple Metabolic Pathways of 2,4,6-Tribromophenol in Rice Plants. <i>Environmental Science & Environmental Science & Technology</i> , 2019 , 53, 7473-7482	10.3	23
391	Spatial distribution of parabens, triclocarban, triclosan, bisphenols, and tetrabromobisphenol A and its alternatives in municipal sewage sludges in China. <i>Science of the Total Environment</i> , 2019 , 679, 61-69	10.2	31
390	Role of protein corona in the biological effect of nanomaterials: Investigating methods. <i>TrAC</i> - <i>Trends in Analytical Chemistry</i> , 2019 , 118, 303-314	14.6	25
389	Prenatal Exposure to Per- and Polyfluoroalkyl Substances (PFASs) and Association between the Placental Transfer Efficiencies and Dissociation Constant of Serum Proteins-PFAS Complexes. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	60
388	Carbon Chain Decomposition of Short Chain Chlorinated Paraffins Mediated by Pumpkin and Soybean Seedlings. <i>Environmental Science & Environmental Scie</i>	10.3	19
387	Suspect screening analysis of the occurrence and removal of micropollutants by GC-QTOF MS during wastewater treatment processes. <i>Journal of Hazardous Materials</i> , 2019 , 376, 153-159	12.8	17
386	Assessment of the carcinogenic effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin using mouse embryonic stem cells to form teratoma in vivo. <i>Toxicology Letters</i> , 2019 , 312, 139-147	4.4	3
385	Thermal decomposition tandem mass spectrometry for rapid detection of tetrabromobisphenol A bis(allyl ether) in soils. <i>Talanta</i> , 2019 , 200, 373-377	6.2	2
384	Occurrence and Degradation Potential of Fluoroalkylsilane Substances as Precursors of Perfluoroalkyl Carboxylic Acids. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	4
383	Exploring the Occurrence and Temporal Variation of ToxCast Chemicals in Fine Particulate Matter Using Suspect Screening Strategy. <i>Environmental Science & Environmental Scien</i>	10.3	9
382	Levels, spatial distribution and isomer profiles of perfluoroalkyl acids in soil, groundwater and tap water around a manufactory in China. <i>Chemosphere</i> , 2019 , 227, 305-314	8.4	33
381	Different circulation history of mercury in aquatic biota from King George Island of the Antarctic. <i>Environmental Pollution</i> , 2019 , 250, 892-897	9.3	3

380	Molecular characterization of water-soluble organic compounds in PM2.5 using ultrahigh resolution mass spectrometry. <i>Science of the Total Environment</i> , 2019 , 668, 917-924	10.2	13	
379	Migration of chlorinated paraffins from plastic food packaging into food simulants: Concentrations and differences in congener profiles. <i>Chemosphere</i> , 2019 , 225, 557-564	8.4	30	
378	Tuning the performance of graphene as a dual-ion-mode MALDI matrix by chemical functionalization and sample incubation. <i>Talanta</i> , 2019 , 199, 532-540	6.2	14	
377	Unraveling the role of silicon in atmospheric aerosol secondary formation: a new conservative tracer for aerosol chemistry. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 2861-2870	6.8	8	
376	Current Prospective on Environmental Nanotechnology Research in China. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	4	
375	Seasonal variation and human exposure assessment of legacy and novel brominated flame retardants in PM in different microenvironments in Beijing, China. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 173, 526-534	7	16	
374	Multivariate Optimization of Tenax TA-Thermal Extraction for Determining Gaseous Phase Organophosphate Esters in Air Samples. <i>Scientific Reports</i> , 2019 , 9, 3330	4.9	1	
373	Air monitoring of polychlorinated biphenyls, polybrominated diphenyl ethers and organochlorine pesticides in West Antarctica during 2011-2017: Concentrations, temporal trends and potential sources. <i>Environmental Pollution</i> , 2019 , 249, 381-389	9.3	29	
372	Distinguishing the sources of silica nanoparticles by dual isotopic fingerprinting and machine learning. <i>Nature Communications</i> , 2019 , 10, 1620	17.4	17	
371	Effects of migration and reproduction on the variation in persistent organic pollutant levels in Kentish Plovers from Cangzhou Wetland, China. <i>Science of the Total Environment</i> , 2019 , 670, 122-128	10.2	5	
370	In situ remediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials. <i>Environmental Science: Nano</i> , 2019 , 6, 1283-1302	7.1	38	
369	Temporal variations of PM-bound organophosphate flame retardants in different microenvironments in Beijing, China, and implications for human exposure. <i>Science of the Total Environment</i> , 2019 , 666, 226-234	10.2	17	
368	Airborne Fine Particles Induce Hematological Effects through Regulating the Crosstalk of the Kallikrein-Kinin, Complement, and Coagulation Systems. <i>Environmental Science & Environmental Science & E</i>	10.3	14	
367	Exploring the Heterogeneity of Nanoparticles in Their Interactions with Plasma Coagulation Factor XII. <i>ACS Nano</i> , 2019 , 13, 1990-2003	16.7	7	
366	The thermal transformation mechanism of chlorinated paraffins: An experimental and density functional theory study. <i>Journal of Environmental Sciences</i> , 2019 , 75, 378-387	6.4	5	
365	Scattered Light Imaging Enables Real-Time Monitoring of Label-Free Nanoparticles and Fluorescent Biomolecules in Live Cells. <i>Journal of the American Chemical Society</i> , 2019 , 141, 14043-14047	16.4	19	
364	Abiotic Methylation of Tetrabromobisphenol A (TBBPA) with the Occurrence of Methyl Iodide in Aqueous Environments. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 558-564	11	О	
363	A review of sources, environmental occurrences and human exposure risks of hexachlorobutadiene and its association with some other chlorinated organics. <i>Environmental Pollution</i> , 2019 , 253, 831-840	9.3	5	

362	Trophic Dilution of Short-Chain Chlorinated Paraffins in a Plant-Plateau Pika-Eagle Food Chain from the Tibetan Plateau. <i>Environmental Science & Environmental Science & Envi</i>	10.3	16
361	A case report of conjoined twins in medaka fish. <i>Molecular Reproduction and Development</i> , 2019 , 86, 10	08 3.4 08	51
360	Occurrence of and human exposure to benzothiazoles and benzotriazoles in mollusks in the Bohai Sea, China. <i>Environment International</i> , 2019 , 130, 104925	12.9	11
359	Analysis of silver-associated proteins in pathogen via combination of native SDS-PAGE, fluorescent staining, and inductively coupled plasma mass spectrometry. <i>Journal of Chromatography A</i> , 2019 , 1607, 460393	4.5	3
358	Associations between Exposure to Persistent Organic Pollutants and Thyroid Function in a Case-Control Study of East China. <i>Environmental Science & East Technology</i> , 2019 , 53, 9866-9875	10.3	20
357	Glycosylation of Tetrabromobisphenol A in Pumpkin. <i>Environmental Science & amp; Technology</i> , 2019 , 53, 8805-8812	10.3	17
356	Ultralong AgNWs-induced toxicity in A549 cells and the important roles of ROS and autophagy. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 186, 109742	7	7
355	A Review of Environmental Occurrence, Fate, and Toxicity of Novel Brominated Flame Retardants. <i>Environmental Science & Description of Manager & Descript</i>	10.3	84
354	Freezing Facilitates Formation of Silver Nanoparticles under Natural and Simulated Sunlight Conditions. <i>Environmental Science & Environmental Science</i>	10.3	6
353	Possible role of extracellular vesicles in exogenous chemical exposure-associated health concern. Journal of Environmental Sciences, 2019 , 80, 1-4	6.4	3
352	High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl substances (PFASs) in environmental and human samples. <i>TrAC - Trends in Analytical Chemistry</i> , 2019 , 121, 115420	14.6	73
351	Emerging aromatic secondary amine contaminants and related derivatives in various dust matrices in China. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 170, 657-663	7	12
350	Presence and human exposure assessment of organophosphate flame retardants (OPEs) in indoor dust and air in Beijing, China. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 169, 383-391	7	40
349	Elimination of short-chain chlorinated paraffins in diet after Chinese traditional cooking-a cooking case study. <i>Environment International</i> , 2019 , 122, 340-345	12.9	14
348	Mirror image between gas-particle partitioning and soil-moss distribution of polybrominated diphenyl ethers in the polar regions. <i>Science of the Total Environment</i> , 2019 , 656, 1199-1206	10.2	6
347	3D printed gel electrophoresis device coupling with ICP-MS for online separation and detection of metalloproteins. <i>Talanta</i> , 2019 , 197, 145-150	6.2	13
346	Brominated flame retardants in atmospheric fine particles in the Beijing-Tianjin-Hebei region, China: Spatial and temporal distribution and human exposure assessment. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 171, 181-189	7	17
345	Direct determination of free state low molecular weight compounds in serum by online TurboFlow SPE HPLC-MS/MS and its application. <i>Talanta</i> , 2019 , 194, 960-968	6.2	7

344	The atmospheric transport and pattern of Medium chain chlorinated paraffins at Shergyla Mountain on the Tibetan Plateau of China. <i>Environmental Pollution</i> , 2019 , 245, 46-52	9.3	9
343	Phthalate esters in indoor dust from several regions, China and their implications for human exposure. <i>Science of the Total Environment</i> , 2019 , 652, 1187-1194	10.2	47
342	Uptake and Transformation of Silver Nanoparticles and Ions by Rice Plants Revealed by Dual Stable Isotope Tracing. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	32
341	Ultrasensitive Determination of Tetrabromobisphenol A by Covalent Organic Framework Based Solid Phase Microextraction Coupled with Constant Flow Desorption Ionization Mass Spectrometry. <i>Analytical Chemistry</i> , 2019 , 91, 772-775	7.8	39
340	Occurrence and Human Exposure Assessment of Short- and Medium-Chain Chlorinated Paraffins in Dusts from Plastic Sports Courts and Synthetic Turf in Beijing, China. <i>Environmental Science & Environmental Science & Technology</i> , 2019 , 53, 443-451	10.3	24
339	Protein-specific distribution patterns of perfluoroalkyl acids in egg yolk and albumen samples around a fluorochemical facility. <i>Science of the Total Environment</i> , 2019 , 650, 2697-2704	10.2	17
338	A unique Pb-binding flagellin as an effective remediation tool for Pb contamination in aquatic environment. <i>Journal of Hazardous Materials</i> , 2019 , 363, 34-40	12.8	15
337	Spatial and temporal distribution of organophosphate esters in the atmosphere of the Beijing-Tianjin-Hebei region, China. <i>Environmental Pollution</i> , 2019 , 244, 182-189	9.3	33
336	Facile Photoinduced Generation of Hydroxyl Radical on a Nitrocellulose Membrane Surface and its Application in the Degradation of Organic Pollutants. <i>ChemSusChem</i> , 2018 , 11, 843-847	8.3	8
335	Headspace Solid-Phase Microextraction Coupled to Miniaturized Microplasma Optical Emission Spectrometry for Detection of Mercury and Lead. <i>Analytical Chemistry</i> , 2018 , 90, 3683-3691	7.8	50
334	DEP and DBP induce cytotoxicity in mouse embryonic stem cells and abnormally enhance neural ectoderm development. <i>Environmental Pollution</i> , 2018 , 236, 21-32	9.3	26
333	Polyfluorinated iodine alkanes regulated distinct breast cancer cell progression through binding with estrogen receptor alpha or beta isoforms. <i>Environmental Pollution</i> , 2018 , 239, 300-307	9.3	3
332	Mutual detoxification of mercury and selenium in unicellular Tetrahymena. <i>Journal of Environmental Sciences</i> , 2018 , 68, 143-150	6.4	5
331	Chlorinated Polyfluorinated Ether Sulfonates Exhibit Higher Activity toward Peroxisome Proliferator-Activated Receptors Signaling Pathways than Perfluorooctanesulfonate. <i>Environmental Science & Description (Marchael Scien</i>	10.3	63
330	Hollow TiO spheres with improved visible light photocatalytic activity synergistically enhanced by multi-stimulative: Morphology advantage, carbonate-doping and the induced Ti. <i>Journal of Environmental Sciences</i> , 2018 , 72, 153-165	6.4	11
329	3D printing of graphene-doped target for "matrix-free" laser desorption/ionization mass spectrometry. <i>Chemical Communications</i> , 2018 , 54, 2723-2726	5.8	32
328	An integrated method for simultaneously determining 10 classes of per- and polyfluoroalkyl substances in one drop of human serum. <i>Analytica Chimica Acta</i> , 2018 , 999, 76-86	6.6	28
327	Natural Silicon Isotopic Signatures Reveal the Sources of Airborne Fine Particulate Matter. <i>Environmental Science & Environmental Science & Environme</i>	10.3	17

326	Tracing aquatic bioavailable Hg in three different regions of China using fish Hg isotopes. <i>Ecotoxicology and Environmental Safety</i> , 2018 , 150, 327-334	7	16
325	Insight into the endocrine disrupting effect and cell response to butyltin compounds in H295R cell: Evaluated with proteomics and bioinformatics analysis. <i>Science of the Total Environment</i> , 2018 , 628-629, 1489-1496	10.2	3
324	Methylmercury exposure alters RNA splicing in human neuroblastoma SK-N-SH cells: Implications from proteomic and post-transcriptional responses. <i>Environmental Pollution</i> , 2018 , 238, 213-221	9.3	8
323	Two-dimensional (weak anion exchange chromatography-gel electrophoresis) separations coupling to inductively coupled plasma mass spectrometry strategy for analysis of metalloproteins. <i>Talanta</i> , 2018 , 184, 404-410	6.2	10
322	Organotin exposure stimulates steroidogenesis in H295R Cell via cAMP pathway. <i>Ecotoxicology and Environmental Safety</i> , 2018 , 156, 148-153	7	12
321	Stir bar sorptive extraction and thermal desorption has chromatography/mass spectrometry for determining phosphorus flame retardants in air samples. <i>Analytical Methods</i> , 2018 , 10, 1918-1927	3.2	7
320	Concentrations and congener profiles of chlorinated paraffins in domestic polymeric products in China. <i>Environmental Pollution</i> , 2018 , 238, 326-335	9.3	36
319	Analysis of a broad range of perfluoroalkyl acids in accipiter feathers: method optimization and their occurrence in Nam Co Basin, Tibetan Plateau. <i>Environmental Geochemistry and Health</i> , 2018 , 40, 1877-1886	4.7	7
318	Intranasal administration of tetrabromobisphenol A bis(2-hydroxyethyl ether) induces neurobehavioral changes in neonatal Sprague Dawley rats. <i>Journal of Environmental Sciences</i> , 2018 , 63, 76-86	6.4	9
317	Characterization of mercury-binding proteins in human neuroblastoma SK-N-SH cells with immobilized metal affinity chromatography. <i>Talanta</i> , 2018 , 178, 811-817	6.2	21
316	Perfluorohexadecanoic acid increases paracellular permeability in endothelial cells through the activation of plasma kallikrein-kinin system. <i>Chemosphere</i> , 2018 , 190, 191-200	8.4	6
315	Tissue distribution and maternal transfer of persistent organic pollutants in Kentish Plovers (Charadrius alexandrines) from Cangzhou Wetland, Bohai Bay, China. <i>Science of the Total Environment</i> , 2018 , 612, 1105-1113	10.2	19
314	Developmental toxicity of synthetic phenolic antioxidants to the early life stage of zebrafish. <i>Science of the Total Environment</i> , 2018 , 643, 559-568	10.2	62
313	Identification of the Released and Transformed Products during the Thermal Decomposition of a Highly Chlorinated Paraffin. <i>Environmental Science & Enp.; Technology</i> , 2018 , 52, 10153-10162	10.3	16
312	Chlorinated Polyfluoroalkylether Sulfonates Exhibit Similar Binding Potency and Activity to Thyroid Hormone Transport Proteins and Nuclear Receptors as Perfluorooctanesulfonate. <i>Environmental Science & Environmental Scien</i>	10.3	32
311	China's Fight for Clean Air and Human Health. <i>Environmental Science & Environmental Science & Environ</i>	806.4	15
310	Associated Detection of Superoxide Anion and Mercury(II) under Chronic Mercury Exposure in Cells and Mice Models via a Three-Channel Fluorescent Probe. <i>Analytical Chemistry</i> , 2018 , 90, 9769-9778	7.8	68
309	Temporal variation (2011 0 014) of atmospheric OCPs at King George Island, west Antarctica. <i>Atmospheric Environment</i> , 2018 , 191, 432-439	5.3	7

308	Identification of Unknown Brominated Bisphenol S Congeners in Contaminated Soils as the Transformation Products of Tetrabromobisphenol S Derivatives. <i>Environmental Science & Technology</i> , 2018 , 52, 10480-10489	10.3	14
307	Synthetic Phenolic Antioxidants and Their Metabolites in Mollusks from the Chinese Bohai Sea: Occurrence, Temporal Trend, and Human Exposure. <i>Environmental Science & Environmental Science & Environ</i>	10.3	28
306	E-waste Recycling in China: A Challenging Field. Environmental Science & E-waste Recycling in China: A Challenging Field. Environmental Science & E-waste Recycling in China: A Challenging Field. Environmental Science & E-waste Recycling in China: A Challenging Field. Environmental Science & E-waste Recycling in China: A Challenging Field. Environmental Science & E-waste Recycling in China: A Challenging Field. Environmental Science & E-waste Recycling in China: A Challenging Field. Environmental Science & E-waste Recycling in China: A Challenging Field. Environmental Science & E-waste Recycling in China: A Challenging Field. Environmental Science & E-waste Recycling in China: A Challenging Field. Environmental Science & E-waste Recycling in China: A Challenging Field. Environmental Science & E-waste Recycling in China: A Challenging Field. Environmental Science & E-waste Recycling in China: A Challenging Field. Environmental Science & E-waste Recycling in China: A Challenging in China: A Challenging Field. Environmental Science & E-waste Recycling in China: A Challenging Field. Environmental E-waste Recycling in China: A China:	7 1 67.328	3 38
305	METTL3-mediated m6A modification is required for cerebellar development. <i>PLoS Biology</i> , 2018 , 16, e2004880	9.7	128
304	Effect of silver sulfide nanoparticles on photochemical degradation of dissolved organic matter in surface water. <i>Chemosphere</i> , 2018 , 193, 1113-1119	8.4	5
303	Speciation and bioaccessibility of arsenic in traditional Chinese medicines and assessment of its potential health risk. <i>Science of the Total Environment</i> , 2018 , 619-620, 1088-1097	10.2	13
302	Synthetic Phenolic Antioxidants Cause Perturbation in Steroidogenesis in Vitro and in Vivo. <i>Environmental Science & Environmental Science & Environme</i>	10.3	54
301	Distribution and Pattern Profiles of Chlorinated Paraffins in Human Placenta of Henan Province, China. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 9-13	11	27
300	External Exposure to Short- and Medium-Chain Chlorinated Paraffins for the General Population in Beijing, China. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	61
299	Fast screening of short-chain chlorinated paraffins in indoor dust samples by graphene-assisted laser desorption/ionization mass spectrometry. <i>Talanta</i> , 2018 , 179, 575-582	6.2	11
298	Hydroxylated and methoxylated polybrominated diphenyl ethers in a marine food web of Chinese Bohai Sea and their human dietary exposure. <i>Environmental Pollution</i> , 2018 , 233, 604-611	9.3	19
297	Comment on " In Vivo Neuroimaging of Exosomes Using Gold Nanoparticles". ACS Nano, 2018 , 12, 1171	716.17	1&
296	Transformation/degradation of tetrabromobisphenol A and its derivatives: A review of the metabolism and metabolites. <i>Environmental Pollution</i> , 2018 , 243, 1141-1153	9.3	43
295	Altitudinal dependence of PCBs and PBDEs in soil along the two sides of Mt. Sygera, southeastern Tibetan Plateau. <i>Scientific Reports</i> , 2018 , 8, 14037	4.9	8
294	Distribution of polybrominated diphenyl ethers (PBDEs) in feather and muscle of the birds of prey from Beijing, China. <i>Ecotoxicology and Environmental Safety</i> , 2018 , 165, 343-348	7	9
293	Synthetic Phenolic Antioxidants and Their Metabolites in Sediments from the Coastal Area of Northern China: Spatial and Vertical Distributions. <i>Environmental Science & Distributions</i> , 2018, 52, 13690-13697	10.3	28
292	Determination of short-chain chlorinated paraffins in multiple matrices of Arctic using gas chromatography-electron capture negative ion-low resolution mass spectrometry. <i>MethodsX</i> , 2018 , 5, 939-943	1.9	0
291	Biotransformation of tetrabromobisphenol A dimethyl ether back to tetrabromobisphenol A in whole pumpkin plants. <i>Environmental Pollution</i> , 2018 , 241, 331-338	9.3	17

290	Air-Seawater Gas Exchange and Dry Deposition of Chlorinated Paraffins in a Typical Inner Sea (Liaodong Bay), North China. <i>Environmental Science & Environmental Science</i> (Liaodong Bay), North China. <i>Environmental Science</i> (Liaodong Bay), North China. <i>Environmental Science</i> (Liaodong Bay), North China.	10.3	10
289	Characterization and speciation of mercury in mosses and lichens from the high-altitude Tibetan Plateau. <i>Environmental Geochemistry and Health</i> , 2017 , 39, 475-482	4.7	10
288	Three-year monitoring of atmospheric PCBs and PBDEs at the Chinese Great Wall Station, West Antarctica: Levels, chiral signature, environmental behaviors and source implication. <i>Atmospheric Environment</i> , 2017 , 150, 407-416	5.3	54
287	Occurrence of synthetic phenolic antioxidants and transformation products in urban and rural indoor dust. <i>Environmental Pollution</i> , 2017 , 221, 227-233	9.3	47
286	Organophosphate Esters in Sediment of the Great Lakes. <i>Environmental Science & Emp; Technology</i> , 2017 , 51, 1441-1449	10.3	107
285	ATPase activity tightly regulates RecA nucleofilaments to promote homologous recombination. <i>Cell Discovery</i> , 2017 , 3, 16053	22.3	22
284	Tetrabromobisphenol A (TBBPA) exhibits specific antimicrobial activity against Gram-positive bacteria without detectable resistance. <i>Chemical Communications</i> , 2017 , 53, 3512-3515	5.8	8
283	Isotope Tracers To Study the Environmental Fate and Bioaccumulation of Metal-Containing Engineered Nanoparticles: Techniques and Applications. <i>Chemical Reviews</i> , 2017 , 117, 4462-4487	68.1	54
282	Environmental behaviour of short-chain chlorinated paraffins in aquatic and terrestrial ecosystems of Ny-Lesund and London Island, Svalbard, in the Arctic. <i>Science of the Total Environment</i> , 2017 , 590-591, 163-170	10.2	22
281	Susceptibility of Overweight Mice to Liver Injury as a Result of the ZnO Nanoparticle-Enhanced Liver Deposition of Pb. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	27
2 80	Elemental Mass Size Distribution for Characterization, Quantification and Identification of Trace Nanoparticles in Serum and Environmental Waters. <i>Environmental Science & Environmental Science & En</i>	10.3	49
279	Dechlorination and chlorine rearrangement of 1,2,5,5,6,9,10-heptachlorodecane mediated by the whole pumpkin seedlings. <i>Environmental Pollution</i> , 2017 , 224, 524-531	9.3	18
278	Trophic transfer of hexabromocyclododecane in the terrestrial and aquatic food webs from an e-waste dismantling region in East China. <i>Environmental Sciences: Processes and Impacts</i> , 2017 , 19, 154-1	1603	6
277	Distribution, Bioaccumulation, Trophic Transfer, and Influences of CeO Nanoparticles in a Constructed Aquatic Food Web. <i>Environmental Science & Environmental Science & Envir</i>	10.3	27
276	Recent progress in the application of nanomaterials in the analysis of emerging chemical contaminants. <i>Analytical Methods</i> , 2017 , 9, 2768-2783	3.2	23
275	5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an mC reader. <i>Cell Research</i> , 2017 , 27, 606-625	24.7	358
274	Identification of Emerging Brominated Chemicals as the Transformation Products of Tetrabromobisphenol A (TBBPA) Derivatives in Soil. <i>Environmental Science & Derivatives in Soil.</i> 51, 5434-5444	10.3	44
273	Photo- and thermo-chemical transformation of AgCl and AgS in environmental matrices and its implication. <i>Environmental Pollution</i> , 2017 , 220, 955-962	9.3	29

272	Elemental mercury: Its unique properties affect its behavior and fate in the environment. <i>Environmental Pollution</i> , 2017 , 229, 69-86	9.3	62
271	3D Printing Techniques in Environmental Science and Engineering Will Bring New Innovation. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	16
270	Geographical Differences in Dietary Exposure to Perfluoroalkyl Acids between Manufacturing and Application Regions in China. <i>Environmental Science & Environmental Science & </i>	10.3	28
269	Determination of tetrabromobisphenol-A/S and their main derivatives in water samples by high performance liquid chromatography coupled with inductively coupled plasma tandem mass spectrometry. <i>Journal of Chromatography A</i> , 2017 , 1497, 81-86	4.5	43
268	Catalytic role of iron in the formation of silver nanoparticles in photo-irradiated Ag-dissolved organic matter solution. <i>Environmental Pollution</i> , 2017 , 225, 66-73	9.3	13
267	Chlorinated Polyfluoroalkyl Ether Sulfonic Acids in Marine Organisms from Bohai Sea, China: Occurrence, Temporal Variations, and Trophic Transfer Behavior. <i>Environmental Science & Emp; Technology</i> , 2017 , 51, 4407-4414	10.3	86
266	Atomic-Level-Designed Catalytically Active Palladium Atoms on Ultrathin Gold Nanowires. <i>Advanced Materials</i> , 2017 , 29, 1604571	24	41
265	GEOTRACES inter-calibration of the stable silicon isotope composition of dissolved silicic acid in seawater. <i>Journal of Analytical Atomic Spectrometry</i> , 2017 , 32, 562-578	3.7	23
264	Fluorographene as a Mass Spectrometry Probe for High-Throughput Identification and Screening of Emerging Chemical Contaminants in Complex Samples. <i>Analytical Chemistry</i> , 2017 , 89, 1307-1314	7.8	43
263	Rāktitelbild: Improved Biocompatibility of Black Phosphorus Nanosheets by Chemical Modification (Angew. Chem. 46/2017). <i>Angewandte Chemie</i> , 2017 , 129, 14966-14966	3.6	1
262	Hematological Effects of Gold Nanorods on Erythrocytes: Hemolysis and Hemoglobin Conformational and Functional Changes. <i>Advanced Science</i> , 2017 , 4, 1700296	13.6	35
261	Tracking the Transformation of Nanoparticulate and Ionic Silver at Environmentally Relevant Concentration Levels by Hollow Fiber Flow Field-Flow Fractionation Coupled to ICPMS. <i>Environmental Science & Environmental Scienc</i>	10.3	26
260	Analytical methodology for identification of novel per- and polyfluoroalkyl substances in the environment. <i>TrAC - Trends in Analytical Chemistry</i> , 2017 , 95, 122-131	14.6	46
259	Strengthening the Study on the Behavior and Transformation of Medium-Chain Chlorinated Paraffins in the Environment. <i>Environmental Science & Environmental Science & Environm</i>	10.3	21
258	Bioaccumulation of hexachlorobutadiene in pumpkin seedlings after waterborne exposure. <i>Environmental Sciences: Processes and Impacts</i> , 2017 , 19, 1327-1335	4.3	4
257	Identification of Novel Hydrogen-Substituted Polyfluoroalkyl Ether Sulfonates in Environmental Matrices near Metal-Plating Facilities. <i>Environmental Science & Environmental </i>	10.3	42
256	Improved Biocompatibility of Black Phosphorus Nanosheets by Chemical Modification. <i>Angewandte Chemie</i> , 2017 , 129, 14680-14685	3.6	18
255	Improved Biocompatibility of Black Phosphorus Nanosheets by Chemical Modification. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 14488-14493	16.4	101

254	Spatiotemporal Distribution and Alpine Behavior of Short Chain Chlorinated Paraffins in Air at Shergyla Mountain and Lhasa on the Tibetan Plateau of China. <i>Environmental Science & Eamp; Technology</i> , 2017 , 51, 11136-11144	10.3	35
253	Recent advances in the analysis of non-traditional stable isotopes by multi-collector inductively coupled plasma mass spectrometry. <i>Journal of Analytical Atomic Spectrometry</i> , 2017 , 32, 1848-1861	3.7	17
252	Oral Exposure to Silver Nanoparticles or Silver Ions May Aggravate Fatty Liver Disease in Overweight Mice. <i>Environmental Science & Environmental & En</i>	10.3	57
251	Advanced Materials, Technologies, and Complex Systems Analyses: Emerging Opportunities to Enhance Urban Water Security. <i>Environmental Science & Emp; Technology</i> , 2017 , 51, 10274-10281	10.3	93
250	Thermochemical emission and transformation of chlorinated paraffins in inert and oxidizing atmospheres. <i>Chemosphere</i> , 2017 , 185, 899-906	8.4	23
249	A novel high throughput screening assay for binding affinities of perfluoroalkyl iodide for estrogen receptor alpha and beta isoforms. <i>Talanta</i> , 2017 , 175, 413-420	6.2	7
248	Epidermal Penetration of Gold Nanoparticles and Its Underlying Mechanism Based on Human Reconstructed 3D Episkin Model. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 42577-42588	9.5	12
247	Role of Secondary Particle Formation in the Persistence of Silver Nanoparticles in Humic Acid Containing Water under Light Irradiation. <i>Environmental Science & Environmental Science & Environmental</i>	1 2·3	28
246	Determining the Cytotoxicity of Rare Earth Element Nanoparticles in Macrophages and the Involvement of Membrane Damage. <i>Environmental Science & Environmental Science & Envir</i>	10.3	20
245	Distinct toxicological characteristics and mechanisms of Hg and MeHg in Tetrahymena under low concentration exposure. <i>Aquatic Toxicology</i> , 2017 , 193, 152-159	5.1	15
244	Development of matrix solid-phase dispersion method for the extraction of short-chain chlorinated paraffins in human placenta. <i>Journal of Environmental Sciences</i> , 2017 , 62, 154-162	6.4	7
243	Atmospheric levels and distribution of Dechlorane Plus in an E-waste dismantling region of East China. <i>Science China Chemistry</i> , 2017 , 60, 305-310	7.9	6
242	Analysis of bromophenols in various aqueous samples using solid phase extraction followed by HPLC-MS/MS. <i>Talanta</i> , 2017 , 164, 57-63	6.2	21
241	Short-chain chlorinated paraffins in soil, paddy seeds (Oryza sativa) and snails (Ampullariidae) in an e-waste dismantling area in China: Homologue group pattern, spatial distribution and risk assessment. <i>Environmental Pollution</i> , 2017 , 220, 608-615	9.3	34
240	Evaluation and reduction of the analytical uncertainties in GC-MS analysis using a boundary regression model. <i>Talanta</i> , 2017 , 164, 141-147	6.2	7
239	Analytical methods, formation, and dissolution of cinnabar and its impact on environmental cycle of mercury. <i>Critical Reviews in Environmental Science and Technology</i> , 2017 , 47, 2415-2447	11.1	17
238	Structure-Dependent Hematological Effects of Per- and Polyfluoroalkyl Substances on Activation of Plasma Kallikrein-Kinin System Cascade. <i>Environmental Science & Environmental Science & Environment</i>	183	11
237	PBDEs, PCBs and PCDD/Fs in the sediments from seven major river basins in China: Occurrence, congener profile and spatial tendency. <i>Chemosphere</i> , 2016 , 144, 13-20	8.4	37

(2016-2016)

236	Exposure to Bisphenol AF disrupts sex hormone levels and vitellogenin expression in zebrafish. <i>Environmental Toxicology</i> , 2016 , 31, 285-94	4.2	43
235	Evaluating the role of re-adsorption of dissolved Hg(2+) during cinnabar dissolution using isotope tracer technique. <i>Journal of Hazardous Materials</i> , 2016 , 317, 466-475	12.8	10
234	Formation of Nanosilver from Silver Sulfide Nanoparticles in Natural Waters by Photoinduced Fe(II, III) Redox Cycling. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	43
233	Stable silver isotope fractionation in the natural transformation process of silver nanoparticles. <i>Nature Nanotechnology</i> , 2016 , 11, 682-6	28.7	63
232	Brain-targeted distribution and high retention of silver by chronic intranasal instillation of silver nanoparticles and ions in Sprague-Dawley rats. <i>Journal of Applied Toxicology</i> , 2016 , 36, 445-53	4.1	33
231	Quantification of short- and medium-chain chlorinated paraffins in environmental samples by gas chromatography quadrupole time-of-flight mass spectrometry. <i>Journal of Chromatography A</i> , 2016 , 1452, 98-106	4.5	43
230	Mercury in alpine fish from four rivers in the Tibetan Plateau. <i>Journal of Environmental Sciences</i> , 2016 , 39, 22-28	6.4	24
229	Sources and environmental behaviors of Dechlorane Plus and related compounds - A review. <i>Environment International</i> , 2016 , 88, 206-220	12.9	61
228	Distribution and congener profiles of short-chain chlorinated paraffins in indoor/outdoor glass window surface films and their film-air partitioning in Beijing, China. <i>Chemosphere</i> , 2016 , 144, 1327-33	8.4	34
227	Screening of Toxic Chemicals in a Single Drop of Human Whole Blood Using Ordered Mesoporous Carbon as a Mass Spectrometry Probe. <i>Analytical Chemistry</i> , 2016 , 88, 4107-13	7.8	47
226	Tetrabromobisphenol-A/S and Nine Novel Analogs in Biological Samples from the Chinese Bohai Sea: Implications for Trophic Transfer. <i>Environmental Science & Environmental Sci</i>	10.3	68
225	Superoxide-Mediated Extracellular Biosynthesis of Silver Nanoparticles by the FungusFusarium oxysporum. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 160-165	11	38
224	Simultaneous qualitative and quantitative analysis of fluoroalkyl sulfonates in riverine water by liquid chromatography coupled with Orbitrap high resolution mass spectrometry. <i>Journal of Chromatography A</i> , 2016 , 1435, 66-74	4.5	50
223	Nuclear m(6)A Reader YTHDC1 Regulates mRNA Splicing. <i>Molecular Cell</i> , 2016 , 61, 507-519	17.6	847
222	Structure prediction of methyoxy-polybrominated diphenyl ethers (MeO-PBDEs) through GC-MS analysis of their corresponding PBDEs. <i>Talanta</i> , 2016 , 152, 9-14	6.2	2
221	Estimation of bioaccessibility and potential human health risk of mercury in Chinese patent medicines. <i>Journal of Environmental Sciences</i> , 2016 , 39, 37-44	6.4	16
220	Low temperature synthesized ultrathin EFe2O3 nanosheets show similar adsorption behaviour for As(III) and As(V). <i>Journal of Materials Chemistry A</i> , 2016 , 4, 7606-7614	13	44
219	Trace metal profiles in mosses and lichens from the high-altitude Tibetan Plateau. <i>RSC Advances</i> , 2016 , 6, 541-546	3.7	11

218	Silver nanoparticles induced neurotoxicity through oxidative stress in rat cerebral astrocytes is distinct from the effects of silver ions. <i>NeuroToxicology</i> , 2016 , 52, 210-21	4.4	80
217	Rethinking Stability of Silver Sulfide Nanoparticles (Ag2S-NPs) in the Aquatic Environment: Photoinduced Transformation of Ag2S-NPs in the Presence of Fe(III). <i>Environmental Science & Technology</i> , 2016 , 50, 188-96	10.3	47
216	Observation of Emerging Photoinitiator Additives in Household Environment and Sewage Sludge in China. <i>Environmental Science & Environmental &</i>	10.3	35
215	Hierarchical rattle-like N-doped anatase TiO2 superstructure: one-pot synthesis, morphological evolution and superior visible light photocatalytic activity. <i>Catalysis Science and Technology</i> , 2016 , 6, 3108-3116	5.5	14
214	Rapid growth of environmental research in China. Journal of Environmental Sciences, 2016, 39, 1-3	6.4	7
213	Negatively charged silver nanoparticles cause retinal vascular permeability by activating plasma contact system and disrupting adherens junction. <i>Nanotoxicology</i> , 2016 , 10, 501-11	5.3	17
212	Evaluation of two passive samplers for the analysis of organophosphate esters in the ambient air. <i>Talanta</i> , 2016 , 147, 69-75	6.2	34
211	Occurrence, temporal trends, and half-lives of perfluoroalkyl acids (PFAAs) in occupational workers in China. <i>Scientific Reports</i> , 2016 , 6, 38039	4.9	71
21 0	Natural stable isotopes: new tracers in environmental health studies. <i>National Science Review</i> , 2016 , 3, 410-410	10.8	2
209	The potential neurotoxicity of emerging tetrabromobisphenol A derivatives based on rat pheochromocytoma cells. <i>Chemosphere</i> , 2016 , 154, 194-203	8.4	39
208	Occurrence and speciation of polymeric chromium(III), monomeric chromium(III) and chromium(VI) in environmental samples. <i>Chemosphere</i> , 2016 , 156, 14-20	8.4	32
207	Exposure, tissue biodistribution, and biotransformation of nanosilver. <i>NanoImpact</i> , 2016 , 2, 18-28	5.6	20
206	Tracking the Fate of Surface Plasmon Resonance-Generated Hot Electrons by In Situ SERS Surveying of Catalyzed Reaction. <i>Small</i> , 2016 , 12, 6378-6387	11	14
205	Recent advances in the analysis of TBBPA/TBBPS, TBBPA/TBBPS derivatives and their transformation products. <i>TrAC - Trends in Analytical Chemistry</i> , 2016 , 83, 14-24	14.6	41
204	Fabrication of highly-specific SERS substrates by co-precipitation of functional nanomaterials during the self-sedimentation of silver nanowires into a nanoporous film. <i>Chemical Communications</i> , 2015 , 51, 1309-12	5.8	22
203	Vitamin E attenuates silver nanoparticle-induced effects on body weight and neurotoxicity in rats. <i>Biochemical and Biophysical Research Communications</i> , 2015 , 458, 405-10	3.4	32
202	Identification of Novel Polyfluorinated Ether Sulfonates as PFOS Alternatives in Municipal Sewage Sludge in China. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	147
201	Silver ion post-column derivatization electrospray ionization mass spectrometry for determination of tetrabromobisphenol A derivatives in water samples. <i>RSC Advances</i> , 2015 , 5, 17474-17481	3.7	22

(2015-2015)

200	Spatial distribution and fate of perfluoroalkyl substances in sediments from the Pearl River Estuary, South China. <i>Marine Pollution Bulletin</i> , 2015 , 96, 226-34	6.7	31	
199	Elemental Mercury in Natural Waters: Occurrence and Determination of Particulate Hg(0). Environmental Science & amp; Technology, 2015, 49, 9742-9	10.3	18	
198	Toward full spectrum speciation of silver nanoparticles and ionic silver by on-line coupling of hollow fiber flow field-flow fractionation and minicolumn concentration with multiple detectors. <i>Analytical Chemistry</i> , 2015 , 87, 8441-7	7.8	43	
197	Elevated levels of perfluoroalkyl acids in family members of occupationally exposed workers: the importance of dust transfer. <i>Scientific Reports</i> , 2015 , 5, 9313	4.9	22	
196	Occurrence of organochlorine pesticides in the environmental matrices from King George Island, west Antarctica. <i>Environmental Pollution</i> , 2015 , 206, 142-9	9.3	44	
195	Water chemistry controlled aggregation and photo-transformation of silver nanoparticles in environmental waters. <i>Journal of Environmental Sciences</i> , 2015 , 34, 116-25	6.4	49	
194	Silver nanoparticle exposure induces rat motor dysfunction through decrease in expression of calcium channel protein in cerebellum. <i>Toxicology Letters</i> , 2015 , 237, 112-20	4.4	31	
193	Lichen, moss and soil in resolving the occurrence of semi-volatile organic compounds on the southeastern Tibetan Plateau, China. <i>Science of the Total Environment</i> , 2015 , 518-519, 328-36	10.2	36	
192	The rise of stem cell toxicology. Environmental Science & amp; Technology, 2015, 49, 5847-8	10.3	39	
191	Particle coating-dependent interaction of molecular weight fractionated natural organic matter: impacts on the aggregation of silver nanoparticles. <i>Environmental Science & Environmental Science & E</i>	10.3	87	
190	Temporal Trends and Pattern Changes of Short- and Medium-Chain Chlorinated Paraffins in Marine Mammals from the South China Sea over the Past Decade. <i>Environmental Science & Environmental Science &</i>	10.3	75	
189	Influence of the Surface Functional Group Density on the Carbon-Nanotube-Induced Echymotrypsin Structure and Activity Alterations. <i>ACS Applied Materials & Description Activity Alterations</i> . 1888	о 29 б	67	
188	N and Ti3+ co-doped 3D anatase TiO2 superstructures composed of ultrathin nanosheets with enhanced visible light photocatalytic activity. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 22073-22080	13	60	
187	Real Time Online Correction of Mass Shifts and Intensity Fluctuations in Extractive Electrospray Ionization Mass Spectrometry. <i>Analytical Chemistry</i> , 2015 , 87, 11962-6	7.8	9	
186	Identification of two novel brominated contaminants in water samples by ultra-high performance liquid chromatography-Orbitrap Fusion Tribrid mass spectrometer. <i>Journal of Chromatography A</i> , 2015 , 1377, 92-9	4.5	50	
185	Levels of short chain chlorinated paraffins in pine needles and bark and their vegetation-air partitioning in urban areas. <i>Environmental Pollution</i> , 2015 , 196, 309-12	9.3	26	
184	Occurrence of chiral organochlorine compounds in the environmental matrices from King George Island and Ardley Island, west Antarctica. <i>Scientific Reports</i> , 2015 , 5, 13913	4.9	9	
183	Characterization of Three Tetrabromobisphenol-S Derivatives in Mollusks from Chinese Bohai Sea: A Strategy for Novel Brominated Contaminants Identification. <i>Scientific Reports</i> , 2015 , 5, 11741	4.9	17	

182	Perfluorooctyl Iodide Stimulates Steroidogenesis in H295R Cells via a Cyclic Adenosine Monophosphate Signaling Pathway. <i>Chemical Research in Toxicology</i> , 2015 , 28, 848-54	4	17
181	High-Throughput and Rapid Screening of Low-Mass Hazardous Compounds in Complex Samples. <i>Analytical Chemistry</i> , 2015 , 87, 6931-6	7.8	31
180	Differential accumulation and elimination behavior of perfluoroalkyl Acid isomers in occupational workers in a manufactory in China. <i>Environmental Science & Environmental Sc</i>	10.3	96
179	Biomagnification of mercury in mollusks from coastal areas of the Chinese Bohai Sea. <i>RSC Advances</i> , 2015 , 5, 40036-40045	3.7	15
178	Effects of SiO2 nanoparticles on phospholipid membrane integrity and fluidity. <i>Journal of Hazardous Materials</i> , 2015 , 287, 217-24	12.8	38
177	Polychlorinated biphenyls (PCBs) and polybrominated biphenyl ethers (PBDEs) in environmental samples from Ny-lesund and London Island, Svalbard, the Arctic. <i>Chemosphere</i> , 2015 , 126, 40-6	8.4	42
176	m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. <i>Cell Stem Cell</i> , 2015 , 16, 289-301	18	367
175	Determination of synthetic phenolic antioxidants and relative metabolites in sewage treatment plant and recipient river by high performance liquid chromatography-electrospray tandem mass spectrometry. <i>Journal of Chromatography A</i> , 2015 , 1381, 13-21	4.5	38
174	Methodology for studying biotransformation of polyfluoroalkyl precursors in the environment. <i>TrAC - Trends in Analytical Chemistry</i> , 2015 , 67, 167-178	14.6	26
173	Evaluation of the in vitro estrogenicity of emerging bisphenol analogs and their respective estrogenic contributions in municipal sewage sludge in China. <i>Chemosphere</i> , 2015 , 124, 150-5	8.4	67
172	Graphene oxide nanoribbons: improved synthesis and application in MALDI mass spectrometry. <i>Chemistry - A European Journal</i> , 2015 , 21, 5594-9	4.8	33
171	Occurrence of synthetic phenolic antioxidants and major metabolites in municipal sewage sludge in China. <i>Environmental Science & Environmental Scienc</i>	10.3	59
170	PFOS induced lipid metabolism disturbances in BALB/c mice through inhibition of low density lipoproteins excretion. <i>Scientific Reports</i> , 2014 , 4, 4582	4.9	82
169	Automated and sensitive determination of four anabolic androgenic steroids in urine by online turbulent flow solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry: a novel approach for clinical monitoring and doping control. <i>Talanta</i> , 2014 , 125, 432-8	6.2	19
168	Submonolayer-Pt-Coated Ultrathin Au Nanowires and Their Self-Organized Nanoporous Film: SERS and Catalysis Active Substrates for Operando SERS Monitoring of Catalytic Reactions. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 969-75	6.4	58
167	Determination of nine benzotriazole UV stabilizers in environmental water samples by automated on-line solid phase extraction coupled with high-performance liquid chromatography-tandem mass spectrometry. <i>Talanta</i> , 2014 , 120, 158-66	6.2	60
166	Species-specific isotope dilution-GC-ICP-MS for accurate and precise measurement of methylmercury in water, sediments and biological tissues. <i>Analytical Methods</i> , 2014 , 6, 164-169	3.2	11
165	Occurrence and profiles of bisphenol analogues in municipal sewage sludge in China. <i>Environmental Pollution</i> , 2014 , 186, 14-9	9.3	200

164	Accumulation of total mercury and methylmercury in rice plants collected from different mining areas in China. <i>Environmental Pollution</i> , 2014 , 184, 179-86	9.3	106
163	Graphenized pencil lead fiber: facile preparation and application in solid-phase microextraction. <i>Journal of Chromatography A</i> , 2014 , 1325, 1-7	4.5	36
162	Identification and accurate size characterization of nanoparticles in complex media. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 14476-9	16.4	52
161	3D hierarchical anatase TiO2 superstructures constructed by flanobricks built nanosheets with exposed {001} facets: facile synthesis, formation mechanism and superior photocatalytic activity. <i>CrystEngComm</i> , 2014 , 16, 10547-10552	3.3	18
160	Current levels and composition profiles of emerging halogenated flame retardants and dehalogenated products in sewage sludge from municipal wastewater treatment plants in China. <i>Environmental Science & Environmental Scien</i>	10.3	60
159	Identification and Accurate Size Characterization of Nanoparticles in Complex Media. <i>Angewandte Chemie</i> , 2014 , 126, 14704-14707	3.6	5
158	Distribution of mercury in coastal marine sediments of China: sources and transport. <i>Marine Pollution Bulletin</i> , 2014 , 88, 347-53	6.7	30
157	Distribution of polybrominated diphenyl ethers in the surface sediment of the East China Sea. <i>Science Bulletin</i> , 2014 , 59, 379-387		5
156	Occurrence and removal of benzotriazole ultraviolet stabilizers in a wastewater treatment plant in China. <i>Environmental Sciences: Processes and Impacts</i> , 2014 , 16, 1076-82	4.3	26
155	The mechanism of immunosuppression by perfluorooctanoic acid in BALB/c mice. <i>Toxicology Research</i> , 2014 , 3, 205	2.6	3
155 154		2.6	3 96
	Research, 2014 , 3, 205		96
154	Research, 2014, 3, 205 Tuning cell autophagy by diversifying carbon nanotube surface chemistry. ACS Nano, 2014, 8, 2087-99 Polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polybrominated diphenyl ethers in sediments and fish species from the Murchison Bay of Lake Victoria, Uganda. Science of	16.7	96
154 153	Research, 2014, 3, 205 Tuning cell autophagy by diversifying carbon nanotube surface chemistry. ACS Nano, 2014, 8, 2087-99 Polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polybrominated diphenyl ethers in sediments and fish species from the Murchison Bay of Lake Victoria, Uganda. Science of the Total Environment, 2014, 500-501, 1-10 Photoreduction and stabilization capability of molecular weight fractionated natural organic matter in transformation of silver ion to metallic nanoparticle. Environmental Science & Camp;	16.7	96
154 153 152	Tuning cell autophagy by diversifying carbon nanotube surface chemistry. <i>ACS Nano</i> , 2014 , 8, 2087-99 Polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polybrominated diphenyl ethers in sediments and fish species from the Murchison Bay of Lake Victoria, Uganda. <i>Science of the Total Environment</i> , 2014 , 500-501, 1-10 Photoreduction and stabilization capability of molecular weight fractionated natural organic matter in transformation of silver ion to metallic nanoparticle. <i>Environmental Science & Environmental & </i>	16.7	96 13 70
154 153 152	Tuning cell autophagy by diversifying carbon nanotube surface chemistry. ACS Nano, 2014, 8, 2087-99 Polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polybrominated diphenyl ethers in sediments and fish species from the Murchison Bay of Lake Victoria, Uganda. Science of the Total Environment, 2014, 500-501, 1-10 Photoreduction and stabilization capability of molecular weight fractionated natural organic matter in transformation of silver ion to metallic nanoparticle. Environmental Science & Environmental Science & Environmental Science & Communications, 2014, 48, 9366-73 Fumigant methyl iodide can methylate inorganic mercury species in natural waters. Nature Communications, 2014, 5, 4633 Occurrence and fate of perfluoroalkyl substances in marine sediments from the Chinese Bohai Sea,	16.7 10.2 10.3 17.4 9.3	96 13 70 36
154 153 152 151 150	Tuning cell autophagy by diversifying carbon nanotube surface chemistry. <i>ACS Nano</i> , 2014 , 8, 2087-99 Polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polybrominated diphenyl ethers in sediments and fish species from the Murchison Bay of Lake Victoria, Uganda. <i>Science of the Total Environment</i> , 2014 , 500-501, 1-10 Photoreduction and stabilization capability of molecular weight fractionated natural organic matter in transformation of silver ion to metallic nanoparticle. <i>Environmental Science & amp; Technology</i> , 2014 , 48, 9366-73 Fumigant methyl iodide can methylate inorganic mercury species in natural waters. <i>Nature Communications</i> , 2014 , 5, 4633 Occurrence and fate of perfluoroalkyl substances in marine sediments from the Chinese Bohai Sea, Yellow Sea, and East China Sea. <i>Environmental Pollution</i> , 2014 , 194, 60-68 Reciprocal Transformation between Hydroxylated and Methoxylated Polybrominated Diphenyl	16.7 10.2 10.3 17.4 9.3	96 13 70 36 38

146	6:2 Fluorotelomer iodide in vitro metabolism by rat liver microsomes: comparison with [1,2-(14)C] 6:2 fluorotelomer alcohol. <i>Chemosphere</i> , 2014 , 112, 34-41	8.4	10
145	Reactive extractive electrospray ionization tandem mass spectrometry for sensitive detection of tetrabromobisphenol A derivatives. <i>Analytica Chimica Acta</i> , 2014 , 814, 49-54	6.6	34
144	Polychlorinated biphenyls and hexachlorocyclohexanes in sediments and fish species from the Napoleon Gulf of Lake Victoria, Uganda. <i>Science of the Total Environment</i> , 2014 , 481, 55-60	10.2	25
143	Polychlorinated biphenyls in sediments and fish species from the Murchison Bay of Lake Victoria, Uganda. <i>Science of the Total Environment</i> , 2014 , 482-483, 349-57	10.2	16
142	Chemical basis of interactions between engineered nanoparticles and biological systems. <i>Chemical Reviews</i> , 2014 , 114, 7740-81	68.1	398
141	Nanomaterials for analysis and monitoring of emerging chemical pollutants. <i>TrAC - Trends in Analytical Chemistry</i> , 2014 , 58, 10-22	14.6	83
140	Spatial distributions of methoxylated and hydroxylated polybrominated diphenyl ethers in the East China Seaa seaward increasing trend. <i>Chemosphere</i> , 2014 , 114, 247-54	8.4	23
139	Assessing developmental toxicity and estrogenic activity of halogenated bisphenol A on zebrafish (Danio rerio). <i>Chemosphere</i> , 2014 , 112, 275-81	8.4	84
138	Polychlorinated naphthalenes in sewage sludge from wastewater treatment plants in China. <i>Science of the Total Environment</i> , 2014 , 490, 555-60	10.2	13
137	Environmental fate and behavior of persistent organic pollutants in Shergyla Mountain, southeast of the Tibetan Plateau of China. <i>Environmental Pollution</i> , 2014 , 191, 166-74	9.3	36
136	Use of lipid biomarkers for identification of regional sources and dechlorination characteristics of polychlorinated biphenyls in the East China Sea. <i>Science of the Total Environment</i> , 2014 , 490, 766-75	10.2	17
135	Major sources of MeO/OH-BDEs in the East China Sea elucidated from their records and phytoplankton biomarkers. <i>Environmental Pollution</i> , 2014 , 192, 1-8	9.3	22
134	Dioxins contamination in the feed additive (feed grade cupric sulfate) tied to chlorine industry. <i>Scientific Reports</i> , 2014 , 4, 5975	4.9	10
133	The presence of polychlorinated biphenyls in yellow pigment products in China with emphasis on 3,3'-dichlorobiphenyl (PCB 11). <i>Chemosphere</i> , 2014 , 98, 44-50	8.4	45
132	Direct analysis of eight chlorophenols in urine by large volume injection online turbulent flow solid-phase extraction liquid chromatography with multiple wavelength ultraviolet detection. <i>Talanta</i> , 2014 , 119, 396-400	6.2	23
131	Estrogen-like response of perfluorooctyl iodide in male medaka (Oryzias latipes) based on hepatic vitellogenin induction. <i>Environmental Toxicology</i> , 2013 , 28, 571-8	4.2	4
130	Spatial distribution of mercury in topsoil from five regions of China. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 1756-61	5.1	28
129	Research progress of heavy metal pollution in China: Sources, analytical methods, status, and toxicity. <i>Science Bulletin</i> , 2013 , 58, 134-140		171

128	Metallomics in environmental and health related research: Current status and perspectives. <i>Science Bulletin</i> , 2013 , 58, 169-176		15
127	Organotin compounds in surface sediments from selected fishing ports along the Chinese coast. <i>Science Bulletin</i> , 2013 , 58, 231-237		17
126	Mildly oxidized graphene: facile synthesis, characterization, and application as a matrix in MALDI mass spectrometry. <i>Chemistry - A European Journal</i> , 2013 , 19, 5561-5	4.8	50
125	Trace analysis of mono-, di-, tri-substituted polyfluoroalkyl phosphates and perfluorinated phosphonic acids in sewage sludge by high performance liquid chromatography tandem mass spectrometry. <i>Talanta</i> , 2013 , 111, 170-7	6.2	22
124	Spatial distributions and deposition chronology of short chain chlorinated paraffins in marine sediments across the Chinese Bohai and Yellow Seas. <i>Environmental Science & Environmental Science & En</i>	10.3	86
123	A candidate reference material Mya arenarial for the monitoring of butyltin compounds in mollusks in the marine environment. <i>Analytical Methods</i> , 2013 , 5, 4487	3.2	4
122	Identifying semi-volatile contaminants in fish from Niyang River, Tibetan Plateau. <i>Environmental Earth Sciences</i> , 2013 , 68, 1065-1072	2.9	10
121	Spatial distribution and inter-year variation of hexabromocyclododecane (HBCD) and tris-(2,3-dibromopropyl) isocyanurate (TBC) in farm soils at a peri-urban region. <i>Chemosphere</i> , 2013 , 90, 182-7	8.4	38
120	Structure-dependent activities of hydroxylated polybrominated diphenyl ethers on human estrogen receptor. <i>Toxicology</i> , 2013 , 309, 15-22	4.4	33
119	Quantification of the uptake of silver nanoparticles and ions to HepG2 cells. <i>Environmental Science & Environmental &</i>	10.3	99
118	Silver nanoparticles induced RNA polymerase-silver binding and RNA transcription inhibition in erythroid progenitor cells. <i>ACS Nano</i> , 2013 , 7, 4171-86	16.7	116
117	Identification of tetrabromobisphenol A allyl ether and tetrabromobisphenol A 2,3-dibromopropyl ether in the ambient environment near a manufacturing site and in mollusks at a coastal region. <i>Environmental Science & Environmental Science & Envir</i>	10.3	58
116	Source and migration of short-chain chlorinated paraffins in the coastal East China Sea using multiproxies of marine organic geochemistry. <i>Environmental Science & Environmental Science & Environmen</i>	2 ^{10.3}	39
115	Recent advances in speciation analysis of mercury, arsenic and selenium. Science Bulletin, 2013, 58, 150-	-161	17
114	Graphene oxide induces toll-like receptor 4 (TLR4)-dependent necrosis in macrophages. <i>ACS Nano</i> , 2013 , 7, 5732-45	16.7	203
113	Mechanism of gold nanoparticle induced simultaneously increased PCR efficiency and specificity. <i>Science Bulletin</i> , 2013 , 58, 4593-4601		5
112	Metabolites of 2,4,4'-tribrominated diphenyl ether (BDE-28) in pumpkin after in vivo and in vitro exposure. <i>Environmental Science & Environmental Sci</i>	10.3	31
111	In vivo metabolism of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in young whole pumpkin plant. <i>Environmental Science & Environmental Science & Envir</i>	10.3	51

110	Behavior, fate, and mass loading of short chain chlorinated paraffins in an advanced municipal sewage treatment plant. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	62
109	Levels and distribution patterns of short chain chlorinated paraffins in sewage sludge of wastewater treatment plants in China. <i>Environmental Pollution</i> , 2012 , 160, 88-94	9.3	64
108	Butyltin compounds in vinegar collected in Beijing: Species distribution and source investigation. <i>Science China Chemistry</i> , 2012 , 55, 323-328	7.9	2
107	Identification of photochemical methylation products of tin(II) in aqueous solutions using headspace SPME coupled with GC-FPD or GCMS. <i>Analytical Methods</i> , 2012 , 4, 2109	3.2	2
106	Determination of methylmercury and inorganic mercury by volatile species generation-flameless/flame atomization-atomic fluorescence spectrometry without chromatographic separation. <i>Analytical Methods</i> , 2012 , 4, 1122	3.2	11
105	Sunlight-induced reduction of ionic Ag and Au to metallic nanoparticles by dissolved organic matter. <i>ACS Nano</i> , 2012 , 6, 7910-9	16.7	203
104	Short chain chlorinated paraffins in mollusks from coastal waters in the Chinese Bohai Sea. <i>Environmental Science & Environmental Science & Environme</i>	10.3	88
103	Effective Surface Charge Density Determines the Electrostatic Attraction between Nanoparticles and Cells. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 4993-4998	3.8	66
102	Tris(2,3-dibromopropyl) isocyanurate, hexabromocyclododecanes, and polybrominated diphenyl ethers in mollusks from Chinese Bohai Sea. <i>Environmental Science & Environmental S</i>	10.3	66
101	Sample preparation method for the speciation of polybrominated diphenyl ethers and their methoxylated and hydroxylated analogues in diverse environmental matrices. <i>Talanta</i> , 2012 , 88, 669-76	6.2	46
100	Summer-winter concentrations and gas-particle partitioning of short chain chlorinated paraffins in the atmosphere of an urban setting. <i>Environmental Pollution</i> , 2012 , 171, 38-45	9.3	69
99	Application of Organometallic Speciation in Clinical Studies 2012 , 409-453		
98	PCBs and PBDEs in environmental samples from King George Island and Ardley Island, Antarctica. <i>RSC Advances</i> , 2012 , 2, 1350-1355	3.7	52
97	Distribution of short chain chlorinated paraffins in marine sediments of the East China Sea: influencing factors, transport and implications. <i>Environmental Science & Environmental Science & Environ</i>	3- 9 0-8	69
96	Hemimicelles/admicelles supported on magnetic graphene sheets for enhanced magnetic solid-phase extraction. <i>Journal of Chromatography A</i> , 2012 , 1257, 1-8	4.5	75
95	Levels and distribution of polychlorinated biphenyls in the atmosphere close to Chinese Great Wall Station, Antarctica: Results from XAD-resin passive air sampling. <i>Science Bulletin</i> , 2012 , 57, 1499-1503		17
94	Possible alkylation of inorganic Hg(II) by photochemical processes in the environment. <i>Chemosphere</i> , 2012 , 88, 8-16	8.4	22
93	The in vitro estrogenic activities of polyfluorinated iodine alkanes. <i>Environmental Health Perspectives</i> , 2012 , 120, 119-25	8.4	35

92	Leading neuroblastoma cells to die by multiple premeditated attacks from a multifunctionalized nanoconstruct. <i>Journal of the American Chemical Society</i> , 2011 , 133, 13918-21	16.4	26
91	Distribution and trophic transfer of short-chain chlorinated paraffins in an aquatic ecosystem receiving effluents from a sewage treatment plant. <i>Environmental Science & amp; Technology</i> , 2011 , 45, 5529-35	10.3	131
90	Spatial and vertical distribution of short chain chlorinated paraffins in soils from wastewater irrigated farmlands. <i>Environmental Science & Environmental Science & Environm</i>	10.3	133
89	Overview of Mercury in the Environment 2011 , 1-12		3
88	Photo-induced chemical-vapor generation for sample introduction in atomic spectrometry. <i>TrAC - Trends in Analytical Chemistry</i> , 2011 , 30, 1672-1684	14.6	109
87	Development of enzyme-linked immunosorbent assays for plasma vitellogenin in Chinese rare minnow (Gobiocypris rarus). <i>Chemosphere</i> , 2011 , 84, 681-8	8.4	14
86	Detection of tris-(2, 3-dibromopropyl) isocyanurate as a neuronal toxicant in environmental samples using neuronal toxicity-directed analysis. <i>Science China Chemistry</i> , 2011 , 54, 1651-1658	7.9	22
85	Environmental and biological influences on the stability of silver nanoparticles. <i>Science Bulletin</i> , 2011 , 56, 2009-2015		16
84	A competitive dual-label time-resolved fluoroimmunoassay for the simultaneous determination of chloramphenicol and ractopamine in swine tissue. <i>Science Bulletin</i> , 2011 , 56, 1543-1547		6
83	Induced temperature-dependent DNA degradation by C60 without photoactivation. <i>Science Bulletin</i> , 2011 , 56, 3100-3107		2
82	Graphene and Graphene Oxide Sheets Supported on Silica as Versatile and High-Performance Adsorbents for Solid-Phase Extraction. <i>Angewandte Chemie</i> , 2011 , 123, 6035-6039	3.6	84
81	Graphene and graphene oxide sheets supported on silica as versatile and high-performance adsorbents for solid-phase extraction. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 5913-7	16.4	339
80	Evaluation of graphene as an advantageous adsorbent for solid-phase extraction with chlorophenols as model analytes. <i>Journal of Chromatography A</i> , 2011 , 1218, 197-204	4.5	278
79	Development of polypropylene coated hollow fiber membranes as passive sampler for field equilibrium sampling of odorous compounds in environmental waters. <i>Analytical Methods</i> , 2011 , 3, 696-	702	1
78	Identification of tetrabromobisphenol A diallyl ether as an emerging neurotoxicant in environmental samples by bioassay-directed fractionation and HPLC-APCI-MS/MS. <i>Environmental Science & Mamp; Technology</i> , 2011 , 45, 5009-16	10.3	62
77	Steering carbon nanotubes to scavenger receptor recognition by nanotube surface chemistry modification partially alleviates NFB activation and reduces its immunotoxicity. <i>ACS Nano</i> , 2011 , 5, 4581	-19 67	76
76	Application of Gas ChromatographyAtomic Fluorescence Spectrometry Hyphenated System for Speciation of Butyltin Compounds in Water Samples. <i>Spectroscopy Letters</i> , 2011 , 44, 393-398	1.1	10
75	L-cysteine-induced degradation of organic mercury as a novel interface in the HPLC-CV-AFS hyphenated system for speciation of mercury. <i>Journal of Analytical Atomic Spectrometry</i> , 2010 , 25, 810	3.7	53

74	Distribution of perfluorooctane sulfonate and other perfluorochemicals in the ambient environment around a manufacturing facility in China. <i>Environmental Science & Environmental Science & Environme</i>	10.3	102
73	Spatial and seasonal variations of organochlorine compounds in air on an urban-rural transect across Tianjin, China. <i>Chemosphere</i> , 2010 , 78, 92-8	8.4	67
72	Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. <i>Aquatic Toxicology</i> , 2010 , 100, 160-7	5.1	138
71	Assessment of polychlorinated biphenyls and polybrominated diphenyl ethers in Tibetan butter. <i>Chemosphere</i> , 2010 , 78, 772-7	8.4	19
7°	Speciation of organotin compounds in environmental samples with semi-permanent coated capillaries by capillary electrophoresis coupled with inductively coupled plasma mass spectrometry. <i>Analytical Methods</i> , 2010 , 2, 2025	3.2	21
69	Rapid analysis of volatile arsenic species released from lake sediment by a packed cotton column coupled with atomic fluorescence spectrometry. <i>Journal of Analytical Atomic Spectrometry</i> , 2010 , 25, 1605	3.7	21
68	Excretion of PFOA and PFOS in male rats during a subchronic exposure. <i>Archives of Environmental Contamination and Toxicology</i> , 2010 , 58, 205-13	3.2	53
67	Levels, trends and risk assessment of arsenic pollution in Yangzonghai Lake, Yunnan Province, China. <i>Science China Chemistry</i> , 2010 , 53, 1809-1817	7.9	30
66	Use of cloud point extraction for removal of nanosized copper oxide from wastewater. <i>Science Bulletin</i> , 2010 , 55, 346-349		22
65	An analytical method for chlorinated paraffins and their determination in soil samples. <i>Science Bulletin</i> , 2010 , 55, 2396-2402		22
64	Trophic transfer of mercury and methylmercury in an aquatic ecosystem impacted by municipal sewage effluents in Beijing, China. <i>Journal of Environmental Sciences</i> , 2010 , 22, 1189-94	6.4	8
63	Mercury profiles in sediments of the Pearl River Estuary and the surrounding coastal area of South China. <i>Environmental Pollution</i> , 2010 , 158, 1974-9	9.3	74
62	Characteristic accumulation and soil penetration of polychlorinated biphenyls and polybrominated diphenyl ethers in wastewater irrigated farmlands. <i>Chemosphere</i> , 2010 , 81, 1045-51	8.4	28
61	Solid-phase extraction of sulfonylurea herbicides from water samples with single-walled carbon nanotubes disk. <i>Mikrochimica Acta</i> , 2009 , 164, 431-438	5.8	51
60	Mercury speciation by a high performance liquid chromatographylltomic fluorescence spectrometry hyphenated system with photo-induced chemical vapour generation reagent in the mobile phase. <i>Mikrochimica Acta</i> , 2009 , 167, 289-295	5.8	29
59	Organotin pollution in China: an overview of the current state and potential health risk. <i>Journal of Environmental Management</i> , 2009 , 90 Suppl 1, S16-24	7.9	90
58	Circannual vitellogenin levels in Chinese loach (Misgurnus anguillicaudatus). <i>Environmental Biology of Fishes</i> , 2009 , 85, 23-29	1.6	6
57	Effects of nanoscale quantum dots in male Chinese loaches (Misgurnus anguillicaudatus): Estrogenic interference action, toxicokinetics and oxidative stress. <i>Science in China Series B: Chemistry</i> , 2009 , 52, 1683-1690		6

(2008-2009)

56	Concentrations and source identification of organochlorine pesticides (OCPs) in soils from Wolong Natural Reserve. <i>Science Bulletin</i> , 2009 , 54, 743-751	10.6	28
55	Studies on the toxicological effects of PFOA and PFOS on rats using histological observation and chemical analysis. <i>Archives of Environmental Contamination and Toxicology</i> , 2009 , 56, 338-49	3.2	196
54	Interacting effects of tributyltin and 17beta-estradiol in male Chinese loach (Misgurnus anguillicaudatus). <i>Environmental Toxicology</i> , 2009 , 24, 531-7	4.2	3
53	Simultaneous conduction of two- and three-phase hollow-fiber-based liquid-phase microextraction for the determination of aromatic amines in environmental water samples. <i>Journal of Chromatography A</i> , 2009 , 1216, 756-62	4.5	50
52	Hollow fiber supported ionic liquid membrane microextraction for determination of sulfonamides in environmental water samples by high-performance liquid chromatography. <i>Journal of Chromatography A</i> , 2009 , 1216, 6259-66	4.5	141
51	In vivo biotransformation of 3,3',4,4'-tetrachlorobiphenyl by whole plants-poplars and switchgrass. <i>Environmental Science & Environmental Science & Discourse (March 2009)</i> , 43, 7503-9	10.3	46
50	Use of scalp hair as indicator of human exposure to heavy metals in an electronic waste recycling area. <i>Environmental Pollution</i> , 2009 , 157, 2445-51	9.3	165
49	Effects of perfluorooctane sulfonate on ion channels and glutamate-activated current in cultured rat hippocampal neurons. <i>Environmental Toxicology and Pharmacology</i> , 2009 , 27, 338-44	5.8	29
48	Direct chemical vapour generation-flame atomization as interface of high performance liquid chromatography-atomic fluorescence spectrometry for speciation of mercury without using post-column digestion. <i>Journal of Analytical Atomic Spectrometry</i> , 2009 , 24, 1575	3.7	24
47	Triton X-114 based cloud point extraction: a thermoreversible approach for separation/concentration and dispersion of nanomaterials in the aqueous phase. <i>Chemical Communications</i> , 2009 , 1514-6	5.8	96
46	Selection of bioindicators of polybrominated diphenyl ethers, polychlorinated biphenyls, and organochlorine pesticides in mollusks in the Chinese Bohai Sea. <i>Environmental Science & Technology</i> , 2008 , 42, 7159-65	10.3	52
45	Speciation of mercury in coal using HPLC-CV-AFS system: Comparison of different extraction methods. <i>Journal of Analytical Atomic Spectrometry</i> , 2008 , 23, 1397	3.7	28
44	Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite. <i>Aquatic Toxicology</i> , 2008 , 89, 251-6	5.1	85
43	High levels of heavy metals in rice (Oryza sativa L.) from a typical E-waste recycling area in southeast China and its potential risk to human health. <i>Chemosphere</i> , 2008 , 71, 1269-75	8.4	385
42	Ultraviolet degradation of methyltins: elucidating the mechanism by identification of a detected new intermediary product and investigating the kinetics at various environmental conditions. <i>Chemosphere</i> , 2008 , 72, 389-99	8.4	10
41	Fast purification of trace vitellogenin from Chinese rare minnow using protein A-immobilized antibody. <i>Analytical and Bioanalytical Chemistry</i> , 2008 , 390, 2151-7	4.4	1
40	Effect of polybrominated diphenyl ether on development of cultured hippocampal neuron. <i>Science in China Series B: Chemistry</i> , 2008 , 51, 62-68		2
39	Rapid decolorization of water soluble azo-dyes by nanosized zero-valent iron immobilized on the exchange resin. <i>Science in China Series B: Chemistry</i> , 2008 , 51, 186-192		26

38	Progress in the toxicological researches for quantum dots. <i>Science in China Series B: Chemistry</i> , 2008 , 51, 393-400		19
37	The research of human exposure to polybrominated diphenyl ethers and perfluoroocatane sulfonate. <i>Science Bulletin</i> , 2008 , 53, 481-492		8
36	Concentrations, profiles and gas-particle partitioning of PCDD/Fs, PCBs and PBDEs in the ambient air of an E-waste dismantling area, southeast China. <i>Science Bulletin</i> , 2008 , 53, 521-528		100
35	Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. <i>Analytica Chimica Acta</i> , 2008 , 606, 135-50	6.6	528
34	Simple interface of high-performance liquid chromatography-atomic fluorescence spectrometry hyphenated system for speciation of mercury based on photo-induced chemical vapour generation with formic acid in mobile phase as reaction reagent. <i>Journal of Chromatography A</i> , 2008 , 1181, 77-82	4.5	59
33	On line coupling HPLC and quartz surface-induced luminescence FPD with hydride generation and microporous membrane gas[]quid separator as interface for the speciation of methyltins. <i>Journal of Analytical Atomic Spectrometry</i> , 2007 , 22, 1420	3.7	6
32	Photo-induced chemical vapour generation with formic acid: novel interface for high performance liquid chromatography-atomic fluorescence spectrometry hyphenated system and application in speciation of mercury. <i>Journal of Analytical Atomic Spectrometry</i> , 2007 , 22, 822	3.7	49
31	Methylation of inorganic mercury by methylcobalamin in aquatic systems. <i>Applied Organometallic Chemistry</i> , 2007 , 21, 462-467	3.1	16
30	Preparation of single-walled carbon nanotube fiber coating for solid-phase microextraction of organochlorine pesticides in lake water and wastewater. <i>Journal of Separation Science</i> , 2007 , 30, 2138-4	13 ^{3.4}	85
29	Interaction of methylmercury and selenium on the bioaccumulation and histopathology in medaka (Oryzias latipes). <i>Environmental Toxicology</i> , 2007 , 22, 69-77	4.2	17
28	Preparation of a biochip on porous silicon and application for label-free detection of small molecule-protein interactions. <i>Rapid Communications in Mass Spectrometry</i> , 2007 , 21, 1277-81	2.2	36
27	Cloud point extraction coupled with HPLC-UV for the determination of phthalate esters in environmental water samples. <i>Journal of Environmental Sciences</i> , 2007 , 19, 874-8	6.4	72
26	Determination of atrazine, desethyl atrazine and desisopropyl atrazine in environmental water samples using hollow fiber-protected liquid-phase microextraction and high performance liquid chromatography. <i>Mikrochimica Acta</i> , 2007 , 158, 181-186	5.8	26
25	Evaluation of extraction methods for arsenic speciation in polluted soil and rotten ore by HPLC-HG-AFS analysis. <i>Mikrochimica Acta</i> , 2007 , 159, 175-182	5.8	49
24	Subchronic toxicological effects of aquatic nitrobenzene on Medaka and Chinese rare minnow. <i>Science in China Series B: Chemistry</i> , 2007 , 50, 707-717		6
23	Contamination trends of polybrominated diphenyl ethers, organochlorine pesticides and heavy metals in sediments from Dagu Drainage River estuary, Tianjin. <i>Science Bulletin</i> , 2007 , 52, 1320-1326		8
22	Vitellogenic responses of male Chinese loach (Misgurnus anguillicaudatus) exposed to the individual or binary mixtures of 17Eestradiol and nonylphenol. <i>Science Bulletin</i> , 2007 , 52, 3333-3338		1
21	Polybrominated diphenyl ether in the East Asian environment: a critical review. <i>Environment International</i> , 2007 , 33, 963-73	12.9	204

20	Investigation of organochlorine pesticides (OCPs) in mollusks collected from coastal sites along the Chinese Bohai Sea from 2002 to 2004. <i>Environmental Pollution</i> , 2007 , 146, 100-6	9.3	26
19	Methylation mechanism of tin(II) by methylcobalamin in aquatic systems. <i>Chemosphere</i> , 2007 , 68, 414-9	8.4	7
18	Polybrominated diphenyl ethers and organochlorine pesticides in sewage sludge of wastewater treatment plants in China. <i>Chemosphere</i> , 2007 , 68, 1683-91	8.4	88
17	Occurrence of polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls pollution in sediments from the Haihe River and Dagu Drainage River in Tianjin City, China. <i>Chemosphere</i> , 2007 , 68, 1772-8	8.4	60
16	Chapter 4 Polychlorinated Dibenzo-p-Dioxins, Dibenzofurans, and Biphenyls, and Polybrominated Diphenyl Ethers in China. <i>Developments in Environmental Science</i> , 2007 , 7, 213-236		1
15	Analyses of nitrobenzene, benzene and aniline in environmental water samples by headspace solid phase microextraction coupled with gas chromatography-mass spectrometry. <i>Science Bulletin</i> , 2006 , 51, 1648-1651		12
14	Emerging organic contamination in China. <i>Diqiu Huaxue</i> , 2006 , 25, 1-1		1
13	Simulate methylation reaction of arsenic(III) with methyl iodide in an aquatic system. <i>Applied Organometallic Chemistry</i> , 2006 , 20, 747-753	3.1	6
12	Progress of solid-phase microextraction coatings and coating techniques. <i>Journal of Chromatographic Science</i> , 2006 , 44, 324-32	1.4	30
11	Mercury pollution in China. An overview of the past and current sources of the toxic metal. <i>Environmental Science & Environmental Science & Environme</i>	10.3	263
10	Optimization of Pretreatment Method for Alkylmercuries Speciation in Coal by High-Performance Liquid Chromatography Coupled with UV-Digestion Cold Vapor Atomic Fluorescence Spectrometry. <i>Spectroscopy Letters</i> , 2006 , 39, 785-796	1.1	6
10	Liquid Chromatography Coupled with UV-Digestion Cold Vapor Atomic Fluorescence Spectrometry.	1.1 3.5	38
	Liquid Chromatography Coupled with UV-Digestion Cold Vapor Atomic Fluorescence Spectrometry. Spectroscopy Letters, 2006, 39, 785-796 Monitoring enzyme reaction and screening enzyme inhibitor based on MALDI-TOF-MS platform with a matrix of oxidized carbon nanotubes. Journal of the American Society for Mass Spectrometry,		
9	Liquid Chromatography Coupled with UV-Digestion Cold Vapor Atomic Fluorescence Spectrometry. Spectroscopy Letters, 2006, 39, 785-796 Monitoring enzyme reaction and screening enzyme inhibitor based on MALDI-TOF-MS platform with a matrix of oxidized carbon nanotubes. Journal of the American Society for Mass Spectrometry, 2006, 17, 1616-1619 Evaluation of the extraction methods for arsenic speciation in rice straw, Oryza sativa L., and	3.5	38
9	Liquid Chromatography Coupled with UV-Digestion Cold Vapor Atomic Fluorescence Spectrometry. Spectroscopy Letters, 2006, 39, 785-796 Monitoring enzyme reaction and screening enzyme inhibitor based on MALDI-TOF-MS platform with a matrix of oxidized carbon nanotubes. Journal of the American Society for Mass Spectrometry, 2006, 17, 1616-1619 Evaluation of the extraction methods for arsenic speciation in rice straw, Oryza sativa L., and analysis by HPLC-HG-AFS. Journal of Analytical Atomic Spectrometry, 2005, 20, 103 Preconcentration and Determination of Tin in Water Samples by Using Cloud Point Extraction and	3·5 3·7	38 52
9 8 7	Liquid Chromatography Coupled with UV-Digestion Cold Vapor Atomic Fluorescence Spectrometry. <i>Spectroscopy Letters</i> , 2006 , 39, 785-796 Monitoring enzyme reaction and screening enzyme inhibitor based on MALDI-TOF-MS platform with a matrix of oxidized carbon nanotubes. <i>Journal of the American Society for Mass Spectrometry</i> , 2006 , 17, 1616-1619 Evaluation of the extraction methods for arsenic speciation in rice straw, Oryza sativa L., and analysis by HPLC-HG-AFS. <i>Journal of Analytical Atomic Spectrometry</i> , 2005 , 20, 103 Preconcentration and Determination of Tin in Water Samples by Using Cloud Point Extraction and Graphite Furnace Atomic Absorption Spectrometry. <i>Mikrochimica Acta</i> , 2005 , 150, 329-334 Preliminary survey of estrogenic activity in part of waters in Haihe River, Tianjin. <i>Science Bulletin</i> ,	3·5 3·7	38 52 32
9 8 7 6	Liquid Chromatography Coupled with UV-Digestion Cold Vapor Atomic Fluorescence Spectrometry. <i>Spectroscopy Letters</i> , 2006 , 39, 785-796 Monitoring enzyme reaction and screening enzyme inhibitor based on MALDI-TOF-MS platform with a matrix of oxidized carbon nanotubes. <i>Journal of the American Society for Mass Spectrometry</i> , 2006 , 17, 1616-1619 Evaluation of the extraction methods for arsenic speciation in rice straw, Oryza sativa L., and analysis by HPLC-HG-AFS. <i>Journal of Analytical Atomic Spectrometry</i> , 2005 , 20, 103 Preconcentration and Determination of Tin in Water Samples by Using Cloud Point Extraction and Graphite Furnace Atomic Absorption Spectrometry. <i>Mikrochimica Acta</i> , 2005 , 150, 329-334 Preliminary survey of estrogenic activity in part of waters in Haihe River, Tianjin. <i>Science Bulletin</i> , 2005 , 50, 2565-2570 Simultaneous Determination of Methylmercury and Ethylmercury in Rice by Capillary Gas Chromatography Coupled On-line with Atomic Fluorescence Spectrometry. <i>Journal of AOAC</i>	3.5 3.7 5.8	38 52 32 8

Existence of a Heterogeneous Pathway in Palladium-Catalyzed Carbontarbon Coupling Reaction:

Evidence from Ag@Pd 3 Cu Intermetallic Nanoplates. CCS Chemistry,751-762

7.2 2

Challenges for utilization and management of crop straw from Cd-contaminated soil. *Soil Use and Management*,

3.1 0