Andrew Cumming

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5427505/publications.pdf

Version: 2024-02-01

41258 17546 30,328 129 49 121 citations h-index g-index papers 130 130 130 17168 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	2.9	8,753
2	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	2.9	6,413
3	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	2.9	2,701
4	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	2.9	1,987
5	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	2.9	1,600
6	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808
7	Exploring the sensitivity of next generation gravitational wave detectors. Classical and Quantum Gravity, 2017, 34, 044001.	1.5	735
8	The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets. Publications of the Astronomical Society of the Pacific, 2008, 120, 531-554.	1.0	711
9	End Point of therpProcess on Accreting Neutron Stars. Physical Review Letters, 2001, 86, 3471-3474.	2.9	469
10	The Lick Planet Search: Detectability and Mass Thresholds. Astrophysical Journal, 1999, 526, 890-915.	1.6	314
11	Models for Type I Xâ€Ray Bursts with Improved Nuclear Physics. Astrophysical Journal, Supplement Series, 2004, 151, 75-102.	3.0	286
12	The California-Kepler Survey. V. Peas in a Pod: Planets in a Kepler Multi-planet System Are Similar in Size and Regularly Spaced [*] . Astronomical Journal, 2018, 155, 48.	1.9	239
13	Detectability of extrasolar planets in radial velocity surveys. Monthly Notices of the Royal Astronomical Society, 2004, 354, 1165-1176.	1.6	217
14	MAPPING CRUSTAL HEATING WITH THE COOLING LIGHT CURVES OF QUASI-PERSISTENT TRANSIENTS. Astrophysical Journal, 2009, 698, 1020-1032.	1.6	212
15	The Rapid Proton Process Ashes from Stable Nuclear Burning on an Accreting Neutron Star. Astrophysical Journal, 1999, 524, 1014-1029.	1.6	198
16	Carbon Flashes in the Heavy-Element Ocean on Accreting Neutron Stars. Astrophysical Journal, 2001, 559, L127-L130.	1.6	195
17	Magnetic Field Evolution in Neutron Star Crusts Due to the Hall Effect and Ohmic Decay. Astrophysical Journal, 2004, 609, 999-1017.	1.6	173
18	Magnetic Screening in Accreting Neutron Stars. Astrophysical Journal, 2001, 557, 958-966.	1.6	157

#	Article	IF	CITATIONS
19	Long Type I Xâ€Ray Bursts and Neutron Star Interior Physics. Astrophysical Journal, 2006, 646, 429-451.	1.6	146
20	Disordered Nuclear Pasta, Magnetic Field Decay, and Crust Cooling in Neutron Stars. Physical Review Letters, 2015, 114, 031102.	2.9	135
21	Rotational Evolution during Type I Xâ€Ray Bursts. Astrophysical Journal, 2000, 544, 453-474.	1.6	126
22	Constraining the initial entropy of directly detected exoplanets. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1378-1399.	1.6	121
23	Hall effect in neutron star crusts: evolution, endpoint and dependence on initial conditions. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1618-1629.	1.6	105
24	Heliumâ€rich Thermonuclear Bursts and the Distance to the Accretionâ€powered Millisecond Pulsar SAX J1808.4â^3658. Astrophysical Journal, 2006, 652, 559-568.	1.6	102
25	RADIATIVE HYDRODYNAMIC SIMULATIONS OF HD209458b: TEMPORAL VARIABILITY. Astrophysical Journal, 2010, 710, 1395-1407.	1.6	102
26	Periodic Thermonuclear Xâ€Ray Bursts from GS 1826â^'24 and the Fuel Composition as a Function of Accretion Rate. Astrophysical Journal, 2004, 601, 466-473.	1.6	97
27	On the possibility of a helium white dwarf donor in the presumed ultracompact binary 2SÂ0918–549. Astronomy and Astrophysics, 2005, 441, 675-684.	2.1	95
28	Models of Type I X-Ray Bursts from GS 1826-24: A Probe of rp-Process Hydrogen Burning. Astrophysical Journal, 2007, 671, L141-L144.	1.6	93
29	Models of Type I Xâ€Ray Bursts from 4U 1820â°'30. Astrophysical Journal, 2003, 595, 1077-1085.	1.6	88
30	Millihertz Quasiâ€periodic Oscillations from Marginally Stable Nuclear Burning on an Accreting Neutron Star. Astrophysical Journal, 2007, 665, 1311-1320.	1.6	72
31	OHMIC DISSIPATION IN THE INTERIORS OF HOT JUPITERS. Astrophysical Journal, 2012, 757, 47.	1.6	68
32	MILLIHERTZ QUASI-PERIODIC OSCILLATIONS AND THERMONUCLEAR BURSTS FROM TERZAN 5: A SHOWCASE OF BURNING REGIMES. Astrophysical Journal, 2012, 748, 82.	1.6	67
33	Photodisintegration-triggered Nuclear Energy Release in Superbursts. Astrophysical Journal, 2003, 583, L87-L90.	1.6	66
34	What ignites on the neutron star of 4U 0614+091?. Astronomy and Astrophysics, 2010, 514, A65.	2.1	65
35	Hall equilibria with toroidal and poloidal fields: application to neutron stars. Monthly Notices of the Royal Astronomical Society, 2013, 434, 2480-2490.	1.6	64
36	POST-OUTBURST X-RAY FLUX AND TIMING EVOLUTION OF SWIFT J1822.3–1606. Astrophysical Journal, 2012, 761, 66.	1.6	62

#	Article	IF	CITATIONS
37	A STRONG SHALLOW HEAT SOURCE IN THE ACCRETING NEUTRON STAR MAXI J0556-332. Astrophysical Journal Letters, 2015, 809, L31.	3.0	62
38	Magnetic field evolution in accreting white dwarfs. Monthly Notices of the Royal Astronomical Society, 2002, 333, 589-602.	1.6	61
39	Crystallization of classical multicomponent plasmas. Physical Review E, 2010, 81, 036107.	0.8	59
40	Hall Attractor in Axially Symmetric Magnetic Fields in Neutron Star Crusts. Physical Review Letters, 2014, 112, 171101.	2.9	58
41	First superburst from a classical low-mass X-ray binary transient. Astronomy and Astrophysics, 2008, 479, 177-188.	2.1	57
42	The Thermal Evolution following a Superburst on an Accreting Neutron Star. Astrophysical Journal, 2004, 603, L37-L40.	1.6	56
43	3HeTransport in the Sun and the Solar Neutrino Problem. Physical Review Letters, 1996, 77, 4286-4289.	2.9	54
44	CONSTRAINTS ON NEUTRON STAR MASS AND RADIUS IN GS 1826–24 FROM SUB-EDDINGTON X-RAY BURSTS. Astrophysical Journal, 2012, 749, 69.	1.6	54
45	Physical and orbital properties of $\langle i \rangle \hat{l}^2 \langle i \rangle$ Pictoris b. Astronomy and Astrophysics, 2014, 567, L9.	2.1	54
46	Hall drift and the braking indices of young pulsars. Monthly Notices of the Royal Astronomical Society, 2015, 446, 1121-1128.	1.6	54
47	Rapid Neutrino Cooling in the Neutron Star MXB 1659-29. Physical Review Letters, 2018, 120, 182701.	2.9	54
48	Intermediate long X-ray bursts from the ultra-compact binary candidate SLXÂ1737-282. Astronomy and Astrophysics, 2008, 484, 43-50.	2.1	52
49	THE LONG-TERM POST-OUTBURST SPIN DOWN AND FLUX RELAXATION OF MAGNETAR SWIFT J1822.3–1606. Astrophysical Journal, 2014, 786, 62.	1.6	51
50	CONTINUED COOLING OF THE CRUST IN THE NEUTRON STAR LOW-MASS X-RAY BINARY KS 1731–260. Astrophysical Journal Letters, 2010, 722, L137-L141.	3.0	50
51	Observatory science with eXTP. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	50
52	Lower limit on the heat capacity of the neutron star core. Physical Review C, 2017, 95, .	1.1	49
53	Millihertz Oscillation Frequency Drift Predicts the Occurrence of Type I X-Ray Bursts. Astrophysical Journal, 2008, 673, L35-L38.	1.6	48
54	Radial Velocity Detectability of Lowâ€Mass Extrasolar Planets in Close Orbits. Astrophysical Journal, 2005, 620, 1002-1009.	1.6	47

#	Article	IF	CITATIONS
55	Hot-start Giant Planets Form with Radiative Interiors. Astrophysical Journal Letters, 2017, 846, L17.	3.0	46
56	Hydrogen Electron Capture in Accreting Neutron Stars and the Resultinggâ€Mode Oscillation Spectrum. Astrophysical Journal, 1998, 506, 842-862.	1.6	46
57	PROBING THE CRUST OF THE NEUTRON STAR IN EXO 0748-676. Astrophysical Journal, 2014, 791, 47.	1.6	45
58	THE EVOLUTION OF GAS GIANT ENTROPY DURING FORMATION BY RUNAWAY ACCRETION. Astrophysical Journal, 2017, 834, 149.	1.6	45
59	Thermonuclear X-ray bursts: theory vs.Âobservations. Nuclear Physics, Section B, Proceedings Supplements, 2004, 132, 435-445.	0.5	44
60	Characterization of the gaseous companion <i>κ</i> Andromedae b. Astronomy and Astrophysics, 2014, 562, A111.	2.1	44
61	Superbursts at near-Eddington mass accretion rates. Astronomy and Astrophysics, 2004, 426, 257-265.	2.1	42
62	Magnetars: Time Evolution, Superfluid Properties, and the Mechanism of Magnetic Field Decay. Astrophysical Journal, 2004, 608, L49-L52.	1.6	41
63	Discovery of X-ray burst triplets in EXO 0748-676. Astronomy and Astrophysics, 2007, 465, 559-573.	2.1	41
64	An integrated analysis of radial velocities in planet searches. Monthly Notices of the Royal Astronomical Society, 2010, 401, 1029-1042.	1.6	41
65	Neutron star crust cooling in the Terzan 5 X-ray transient SwiftÂJ174805.3–244637. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2071-2081.	1.6	40
66	The challenge of forming a fuzzy core in Jupiter. Astronomy and Astrophysics, 2020, 638, A121.	2.1	40
67	A CHANGE IN THE QUIESCENT X-RAY SPECTRUM OF THE NEUTRON STAR LOW-MASS X-RAY BINARY MXB 1659–29. Astrophysical Journal, 2013, 774, 131.	1.6	39
68	Nuclear physics in normal X-ray bursts and superblasts. Nuclear Physics A, 2003, 718, 247-254.	0.6	35
69	Late-time Cooling of Neutron Star Transients and the Physics of the Inner Crust. Astrophysical Journal, 2017, 839, 95.	1.6	35
70	Glitch Rises as a Test for Rapid Superfluid Coupling in Neutron Stars. Astrophysical Journal, 2018, 865, 23.	1.6	34
71	Hydrostatic Expansion and Spin Changes during Type I Xâ€Ray Bursts. Astrophysical Journal, 2002, 564, 343-352.	1.6	33
72	SPECTRAL AND TIMING PROPERTIES OF THE MAGNETAR CXOU J164710.2–455216. Astrophysical Journal, 201 763, 82.	³ , _{1.6}	32

#	Article	IF	CITATIONS
73	COMPOSITIONALLY DRIVEN CONVECTION IN THE OCEANS OF ACCRETING NEUTRON STARS. Astrophysical Journal, 2011, 730, 97.	1.6	31
74	THE THERMAL STATE OF KS 1731â^260 AFTER 14.5 YEARS IN QUIESCENCE. Astrophysical Journal, 2016, 833, 186.	1.6	31
75	Neon Cluster Formation and Phase Separation during White Dwarf Cooling. Astrophysical Journal Letters, 2020, 902, L44.	3.0	31
76	Superbursts from Strange Stars. Astrophysical Journal, 2005, 635, L157-L160.	1.6	30
77	A SIGNATURE OF CHEMICAL SEPARATION IN THE COOLING LIGHT CURVES OF TRANSIENTLY ACCRETING NEUTRON STARS. Astrophysical Journal Letters, 2014, 783, L3.	3.0	30
78	URCA COOLING PAIRS IN THE NEUTRON STAR OCEAN AND THEIR EFFECT ON SUPERBURSTS. Astrophysical Journal, 2016, 831, 13.	1.6	30
79	Theory of cooling neutron stars versus observations. AIP Conference Proceedings, 2008, , .	0.3	28
80	A superburst candidate in EXO 1745â^248 as a challenge to thermonuclear ignition models. Monthly Notices of the Royal Astronomical Society, 2012, 426, 927-934.	1.6	28
81	<i>CHANDRA</i> OBSERVATIONS OF SGR 1627–41 NEAR QUIESCENCE. Astrophysical Journal, 2012, 757, 68.	1.6	28
82	The imprint of the protoplanetary disc in the accretion of super-Earth envelopes. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2440-2448.	1.6	25
83	The endpoint of the rp-process on accreting neutron stars. Nuclear Physics A, 2001, 688, 150-153.	0.6	24
84	SHEDDING LIGHT ON THE ECCENTRICITY VALLEY: GAP HEATING AND ECCENTRICITY EXCITATION OF GIANT PLANETS IN PROTOPLANETARY DISKS. Astrophysical Journal, 2014, 782, 113.	1.6	24
85	Different Accretion Heating of the Neutron Star Crust during Multiple Outbursts in MAXI J0556–332. Astrophysical Journal Letters, 2017, 851, L28.	3.0	24
86	Direct molecular dynamics simulation of liquid-solid phase equilibria for a three-component plasma. Physical Review E, 2012, 86, 066413.	0.8	22
87	Detection of burning ashes from thermonuclear X-ray bursts. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 464, L6-L10.	1.2	21
88	Long tails on thermonuclear X-ray bursts from neutron stars: a signature of inward heating?. Astronomy and Astrophysics, 2009, 497, 469-480.	2.1	20
89	Consistent accretion-induced heating of the neutron-star crust in MXB 1659â^'29 during two different outbursts. Astronomy and Astrophysics, 2019, 624, A84.	2.1	19
90	Latitudinal Shear Instabilities during Type I Xâ€Ray Bursts. Astrophysical Journal, 2005, 630, 441-453.	1.6	18

#	Article	IF	Citations
91	Polycrystalline Crusts in Accreting Neutron Stars. Astrophysical Journal, 2018, 860, 148.	1.6	18
92	A Bayesian approach to matching thermonuclear X-ray burst observations with models. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2228-2240.	1.6	18
93	The new intermediate long-bursting source XTEÂJ1701-407. Astronomy and Astrophysics, 2009, 496, 333-342.	2.1	17
94	TIME-DEPENDENT, COMPOSITIONALLY DRIVEN CONVECTION IN THE OCEANS OF ACCRETING NEUTRON STARS. Astrophysical Journal, 2015, 802, 29.	1.6	17
95	The primordial entropy of Jupiter. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4817-4823.	1.6	17
96	The cooling rate of neutron stars after thermonuclear shell flashes. Astronomy and Astrophysics, 2014, 562, A16.	2.1	17
97	Magnetic field evolution in neutron stars. Astronomische Nachrichten, 2007, 328, 1173-1177.	0.6	16
98	CARBON SYNTHESIS IN STEADY-STATE HYDROGEN AND HELIUM BURNING ON ACCRETING NEUTRON STARS. Astrophysical Journal, 2014, 791, 106.	1.6	16
99	The link between coherent burst oscillations, burst spectral evolution and accretion state in 4U 1728–34. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2004-2017.	1.6	16
100	A SURVEY OF CHEMICAL SEPARATION IN ACCRETING NEUTRON STARS. Astrophysical Journal, 2016, 823, 117.	1.6	14
101	Superbursts: A New Probe of the rp-Process. Nuclear Physics A, 2005, 758, 439-446.	0.6	13
102	The imprint of carbon combustion on a superburst from the accreting neutron star 4UÂ1636â^3636. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3559-3566.	1.6	13
103	Cooling Delays from Iron Sedimentation and Iron Inner Cores in White Dwarfs. Astrophysical Journal Letters, 2021, 919, L12.	3.0	13
104	AN ACCURATE DETERMINATION OF THE OPTICAL PERIODIC MODULATION IN THE X-RAY BINARY SAX J1808.4–3658. Astrophysical Journal, 2009, 694, 1115-1120.	1.6	12
105	Predictions of Planet Detections with Near-infrared Radial Velocities in the Upcoming SPIRou Legacy Survey-planet Search. Astronomical Journal, 2018, 155, 93.	1.9	11
106	Penetration of a cooling convective layer into a stably-stratified composition gradient: Entrainment at low Prandtl number. Physical Review Fluids, 2020, 5, .	1.0	11
107	The thermal stability of helium burning on accreting neutron stars. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3278-3288.	1.6	9
108	The LOFT mission concept: a status update. Proceedings of SPIE, 2016, , .	0.8	9

#	Article	IF	CITATIONS
109	The effect of diffusive nuclear burning in neutron star envelopes on cooling in accreting systems. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4936-4944.	1.6	9
110	The superburst recurrence time in luminous persistent LMXBs. Astronomy and Astrophysics, 2006, 455, 1031-1036.	2.1	9
111	Mixed H/He bursts in SAX J1748.9–2021 during the spectral change of its 2015 outburst. Astronomy and Astrophysics, 2018, 620, A114.	2.1	8
112	Magnetic Field Evolution in Accreting Millisecond Pulsars. , 2008, , .		7
113	Accreting neutron star spins and the equation of state. AIP Conference Proceedings, 2008, , .	0.3	6
114	Flux decay during thermonuclear X-ray bursts analysed with the dynamic power-law index method. Astronomy and Astrophysics, 2017, 604, A77.	2.1	5
115	Deep crustal heating by neutrinos from the surface of accreting neutron stars. Physical Review C, 2018, 98, .	1.1	5
116	Expanded Atmospheres and Winds in Type I X-Ray Bursts from Accreting Neutron Stars. Astrophysical Journal, 2021, 914, 49.	1.6	5
117	The effect of late giant collisions on the atmospheres of protoplanets and the formation of cold sub-Saturns. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1413-1431.	1.6	5
118	Flux Relaxation after Two Outbursts of the Magnetar SGR 1627–41 and Possible Hard X-Ray Emission. Astrophysical Journal, 2018, 859, 16.	1.6	4
119	SAX J1808.4-3657 in Quiescence: A Keystone for Neutron Star Science. AIP Conference Proceedings, 2008,	0.3	3
120	Shear flows and their suppression at large aspect ratio: Two-dimensional simulations of a growing convection zone. Physical Review Fluids, 2021, 6, .	1.0	3
121	Thermonuclear burst physics with RXTE. AIP Conference Proceedings, 2004, , .	0.3	2
122	Proton captures in the atmosphere of accreting neutron stars. AIP Conference Proceedings, 2000, , .	0.3	1
123	Proton Captures in the Atmosphere of Accreting Neutron Stars. , 2002, , 153-163.		0
124	Magnetic Field Evolution in Accreting White Dwarfs. International Astronomical Union Colloquium, 2004, 190, 58-70.	0.1	0
125	What can we learn from long term monitoring of X-ray bursters?. AIP Conference Proceedings, 2006, ,	0.3	0
126	The new magnetar Swift J1822.3–1606. Proceedings of the International Astronomical Union, 2012, 8, 486-488.	0.0	0

#	Article	IF	CITATIONS
127	Hall Effect in Neutron Star Crusts. Proceedings of the International Astronomical Union, 2013, 9, 415-418.	0.0	O
128	Magnetic Field Evolution in Accreting White Dwarfs. , 2003, , 183-186.		0
129	THE IMPORTANCE OF THE RP-PROCESS IN THERMONUCLEAR BURNING ON ACCRETING NEUTRON STARS. , 2007, , .		O