
Masashi Okada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5426843/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gemcitabine Cooperates with Everolimus to Inhibit the Growth of and Sensitize Malignant Meningioma Cells to Apoptosis Induced by Navitoclax, an Inhibitor of Anti-Apoptotic BCL-2 Family Proteins. Cancers, 2022, 14, 1706.	3.7	5
2	Inhibition of the Lipid Droplet–Peroxisome Proliferator-Activated Receptor α Axis Suppresses Cancer Stem Cell Properties. Genes, 2021, 12, 99.	2.4	24
3	Roles for hENT1 and dCK in gemcitabine sensitivity and malignancy of meningioma. Neuro-Oncology, 2021, 23, 945-954.	1.2	11
4	Dexamethasone Sensitizes Cancer Stem Cells to Gemcitabine and 5-Fluorouracil by Increasing Reactive Oxygen Species Production through NRF2 Reduction. Life, 2021, 11, 885.	2.4	11
5	Gemcitabine radiosensitization primes irradiated malignant meningioma cells for senolytic elimination by navitoclax. Neuro-Oncology Advances, 2021, 3, vdab148.	0.7	7
6	Targeting Folate Metabolism Is Selectively Cytotoxic to Glioma Stem Cells and Effectively Cooperates with Differentiation Therapy to Eliminate Tumor-Initiating Cells in Glioma Xenografts. International Journal of Molecular Sciences, 2021, 22, 11633.	4.1	13
7	Verteporfin inhibits oxidative phosphorylation and induces cell death specifically in glioma stem cells. FEBS Journal, 2020, 287, 2023-2036.	4.7	40
8	Doxazosin, a Classic Alpha 1-Adrenoceptor Antagonist, Overcomes Osimertinib Resistance in Cancer Cells via the Upregulation of Autophagy as Drug Repurposing. Biomedicines, 2020, 8, 273.	3.2	13
9	Inhibition of Retinoblastoma Cell Growth by CEP1347 Through Activation of the P53 Pathway. Anticancer Research, 2020, 40, 4961-4968.	1.1	16
10	Therapeutic targeting of pancreatic cancer stem cells by dexamethasone modulation of the MKP-1–JNK axis. Journal of Biological Chemistry, 2020, 295, 18328-18342.	3.4	17
11	Brexpiprazole, a Serotonin-Dopamine Activity Modulator, Can Sensitize Glioma Stem Cells to Osimertinib, a Third-Generation EGFR-TKI, via Survivin Reduction. Cancers, 2019, 11, 947.	3.7	26
12	Spironolactone, a Classic Potassium-Sparing Diuretic, Reduces Survivin Expression and Chemosensitizes Cancer Cells to Non-DNA-Damaging Anticancer Drugs. Cancers, 2019, 11, 1550.	3.7	13
13	Brexpiprazole Reduces Survivin and Reverses EGFR Tyrosine Kinase Inhibitor Resistance in Lung and Pancreatic Cancer. Anticancer Research, 2019, 39, 4817-4828.	1.1	14
14	<i>In vitro</i> and <i>in vivo</i> anti-tumor effects of brexpiprazole, a newly-developed serotonin-dopamine activity modulator with an improved safety profile. Oncotarget, 2019, 10, 3547-3558.	1.8	16
15	AS602801 Sensitizes Ovarian Cancer Stem Cells to Paclitaxel by Down-regulating MDR1. Anticancer Research, 2019, 39, 609-617.	1.1	16
16	W9 peptide enhanced osteogenic differentiation of human adipose-derived stem cells. Biochemical and Biophysical Research Communications, 2018, 495, 904-910.	2.1	22
17	AS602801, an Anticancer Stem Cell Candidate Drug, Reduces Survivin Expression and Sensitizes A2780 Ovarian Cancer Stem Cells to Carboplatin and Paclitaxel. Anticancer Research, 2018, 38, 6699-6706.	1.1	15
18	AS602801, an Anti-Cancer Stem Cell Drug Candidate, Suppresses Gap-junction Communication Between Lung Cancer Stem Cells and Astrocytes. Anticancer Research, 2018, 38, 5093-5099.	1.1	18

Masashi Okada

#	Article	IF	CITATIONS
19	A Small-molecule Kinase Inhibitor, CEP-1347, Inhibits Survivin Expression and Sensitizes Ovarian Cancer Stem Cells to Paclitaxel. Anticancer Research, 2018, 38, 4535-4542.	1.1	20
20	Involvement of GLUT1-mediated glucose transport and metabolism in gefitinib resistance of non-small-cell lung cancer cells. Oncotarget, 2018, 9, 32667-32679.	1.8	47
21	Licochalcone A specifically induces cell death in glioma stem cells via mitochondrial dysfunction. FEBS Open Bio, 2017, 7, 835-844.	2.3	28
22	Antitumor activity of gemcitabine against high-grade meningioma in vitro and in vivo. Oncotarget, 2017, 8, 90996-91008.	1.8	17
23	Repositioning CEP-1347, a chemical agent originally developed for the treatment of Parkinson's disease, as an anti-cancer stem cell drug. Oncotarget, 2017, 8, 94872-94882.	1.8	27
24	Olanzapine, an Atypical Antipsychotic, Inhibits Survivin Expression and Sensitizes Cancer Cells to Chemotherapeutic Agents. Anticancer Research, 2017, 37, 6177-6188.	1.1	27
25	Time-staggered inhibition of JNK effectively sensitizes chemoresistant ovarian cancer cells to cisplatin and paclitaxel. Oncology Reports, 2016, 35, 593-601.	2.6	19
26	Reciprocal regulation of p53 and NF-κB by diacylglycerol kinase ζ. Advances in Biological Regulation, 2016, 60, 15-21.	2.3	26
27	The novel JNK inhibitor AS602801 inhibits cancer stem cells <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2016, 7, 27021-27032.	1.8	48
28	Aripiprazole, an Antipsychotic and Partial Dopamine Agonist, Inhibits Cancer Stem Cells and Reverses Chemoresistance. Anticancer Research, 2016, 36, 5153-5162.	1.1	38
29	Impact of H3K27 Demethylase Inhibitor GSKJ4 on NSCLC Cells Alone and in Combination with Metformin. Anticancer Research, 2016, 36, 6083-6092.	1.1	29
30	Rho-Associated Protein Kinase (ROCK) Inhibitors Inhibit Survivin Expression and Sensitize Pancreatic Cancer Stem Cells to Gemcitabine. Anticancer Research, 2016, 36, 6311-6318.	1.1	23
31	Blood SupplySusceptible Formation of Melanin Pigment in Hair Bulb Melanocytes of Mice. Plastic and Reconstructive Surgery - Global Open, 2015, 3, e328.	0.6	3
32	Downregulation of diacylglycerol kinase ζ enhances activation of cytokine-induced NF-κB signaling pathway. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 361-369.	4.1	24
33	JNK suppression of chemotherapeutic agents-induced ROS confers chemoresistance on pancreatic cancer stem cells. Oncotarget, 2015, 6, 458-470.	1.8	83
34	Targeting the facilitative glucose transporter GLUT1 inhibits the self-renewal and tumor-initiating capacity of cancer stem cells. Oncotarget, 2015, 6, 651-661.	1.8	159
35	Differential contribution of ROS to resveratrol-induced cell death and loss of self-renewal capacity of ovarian cancer stem cells. Anticancer Research, 2015, 35, 85-96.	1.1	32
36	GSKJ4, A Selective Jumonji H3K27 Demethylase Inhibitor, Effectively Targets Ovarian Cancer Stem Cells. Anticancer Research, 2015, 35, 6607-14.	1.1	46

Masashi Okada

#	Article	IF	CITATIONS
37	JNK contributes to temozolomide resistance of stem-like glioblastoma cells via regulation of MGMT expression. International Journal of Oncology, 2014, 44, 591-599.	3.3	48
38	Targeting the K-Ras - JNK axis eliminates cancer stem-like cells and prevents pancreatic tumor formation. Oncotarget, 2014, 5, 5100-5112.	1.8	56
39	Requirement of JNK signaling for self-renewal and tumor-initiating capacity of ovarian cancer stem cells. Anticancer Research, 2014, 34, 4723-31.	1.1	17
40	JNK Signaling in the Control of the Tumor-Initiating Capacity Associated with Cancer Stem Cells. Genes and Cancer, 2013, 4, 388-396.	1.9	44
41	Specific role of JNK in the maintenance of the tumor-initiating capacity of A549 human non-small cell lung cancer cells. Oncology Reports, 2013, 30, 1957-1964.	2.6	36
42	Targeting JNK for therapeutic depletion of stem-like glioblastoma cells. Scientific Reports, 2012, 2, 516.	3.3	85
43	Glioma-Initiating Cell Elimination by Metformin Activation of FOXO3 via AMPK. Stem Cells Translational Medicine, 2012, 1, 811-824.	3.3	155
44	DGKζ is involved in LPS-activated phagocytosis through IQGAP1/Rac1 pathway. Biochemical and Biophysical Research Communications, 2012, 420, 479-484.	2.1	17
45	DGKζ is degraded through the cytoplasmic ubiquitin–proteasome system under excitotoxic conditions, which causes neuronal apoptosis because of aberrant cell cycle reentry. Cellular Signalling, 2012, 24, 1573-1582.	3.6	19
46	Interaction of nucleosome assembly proteins abolishes nuclear localization of DGKζ by attenuating its association with importins. Experimental Cell Research, 2011, 317, 2853-2863.	2.6	30
47	Akt Phosphorylation of Merlin Enhances Its Binding to Phosphatidylinositols and Inhibits the Tumor-Suppressive Activities of Merlin. Cancer Research, 2009, 69, 4043-4051.	0.9	31
48	Akt phosphorylation and nuclear phosphoinositide association mediate mRNA export and cell proliferation activities by ALY. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8649-8654.	7.1	96
49	Ebp1 Association with Nucleophosmin/B23 Is Essential for Regulating Cell Proliferation and Suppressing Apoptosis. Journal of Biological Chemistry, 2007, 282, 36744-36754.	3.4	49