
Clifford V Harding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5426629/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CpG Oligodeoxynucleotides Act as Adjuvants that Switch on T Helper 1 (Th1) Immunity. Journal of Experimental Medicine, 1997, 186, 1623-1631.	4.2	953
2	Phagocytic processing of bacterial antigens for class I MHC presentation to T cells. Nature, 1993, 361, 359-362.	13.7	605
3	Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T-cell stimulation. Nature, 1990, 346, 574-576.	13.7	468
4	Toll-Like Receptor 2-Dependent Inhibition of Macrophage Class II MHC Expression and Antigen Processing by 19-kDa Lipoprotein of <i>Mycobacterium tuberculosis</i> . Journal of Immunology, 2001, 167, 910-918.	0.4	391
5	Exosomes: Looking back three decades and into the future. Journal of Cell Biology, 2013, 200, 367-371.	2.3	379
6	Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nature Reviews Microbiology, 2010, 8, 296-307.	13.6	349
7	Human β-defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18631-18635.	3.3	321
8	Liposome-encapsulated antigens are processed in lysosomes, recycled, and presented to T cells. Cell, 1991, 64, 393-401.	13.5	243
9	Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors. Cellular Microbiology, 2007, 9, 1087-1098.	1.1	242
10	COVID-19 and Cardiovascular Disease. Circulation Research, 2021, 128, 1214-1236.	2.0	232
11	<i>Mycobacterium tuberculosis</i> LprG (<i>Rv1411c</i>): A Novel TLR-2 Ligand That Inhibits Human Macrophage Class II MHC Antigen Processing. Journal of Immunology, 2004, 173, 2660-2668.	0.4	231
12	Inhibition of IFN-Î ³ -Induced Class II Transactivator Expression by a 19-kDa Lipoprotein from <i>Mycobacterium tuberculosis</i> : A Potential Mechanism for Immune Evasion. Journal of Immunology, 2003, 171, 175-184.	0.4	226
13	Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling. Cellular Microbiology, 2010, 12, 1648-1665.	1.1	226
14	Transferrin recycling in reticulocytes: pH and iron are important determinants of ligand binding and processing. Biochemical and Biophysical Research Communications, 1983, 113, 650-658.	1.0	204
15	<i>Mycobacterium tuberculosis</i> LprA Is a Lipoprotein Agonist of TLR2 That Regulates Innate Immunity and APC Function. Journal of Immunology, 2006, 177, 422-429.	0.4	203
16	Extracellular vesicles and infectious diseases: new complexity to an old story. Journal of Clinical Investigation, 2016, 126, 1181-1189.	3.9	200
17	<i>Mycobacterium tuberculosis</i> 19-kDa Lipoprotein Inhibits IFN-γ-Induced Chromatin Remodeling of <i>MHC2TA</i> by TLR2 and MAPK Signaling. Journal of Immunology, 2006, 176, 4323-4330.	0.4	198
18	CD4+ and CD8+ T Cells Kill Intracellular <i>Mycobacterium tuberculosis</i> by a Perforin and Fas/Fas Ligand-Independent Mechanism. Journal of Immunology, 2001, 167, 2734-2742.	0.4	182

#	Article	IF	CITATIONS
19	Mycobacterium tuberculosis Inhibits MHC Class II Antigen Processing in Murine Bone Marrow Macrophages. Cellular Immunology, 2000, 201, 63-74.	1.4	166
20	Prolonged Toll-Like Receptor Signaling by Mycobacterium tuberculosis and Its 19-Kilodalton Lipoprotein Inhibits Gamma Interferon-Induced Regulation of Selected Genes in Macrophages. Infection and Immunity, 2004, 72, 6603-6614.	1.0	150
21	The Mycobacterium tuberculosis 19-Kilodalton Lipoprotein Inhibits Gamma Interferon-Regulated HLA-DR and Fcl ³ R1 on Human Macrophages through Toll-Like Receptor 2. Infection and Immunity, 2003, 71, 4487-4497.	1.0	146
22	Interferon-Î \pm Is the Primary Plasma Type-I IFN in HIV-1 Infection and Correlates with Immune Activation and Disease Markers. PLoS ONE, 2013, 8, e56527.	1.1	146
23	The Mycobacterial 38-Kilodalton Glycolipoprotein Antigen Activates the Mitogen-Activated Protein Kinase Pathway and Release of Proinflammatory Cytokines through Toll-Like Receptors 2 and 4 in Human Monocytes. Infection and Immunity, 2006, 74, 2686-2696.	1.0	138
24	TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis. Cellular Immunology, 2009, 258, 29-37.	1.4	137
25	A rapid, automated surface protein profiling of single circulating exosomes in human blood. Scientific Reports, 2016, 6, 36502.	1.6	133
26	TLR9 stimulation drives naÃ⁻ve B cells to proliferate and to attain enhanced antigen presenting function. European Journal of Immunology, 2007, 37, 2205-2213.	1.6	132
27	P2X7 Receptor-Stimulated Secretion of MHC Class II-Containing Exosomes Requires the ASC/NLRP3 Inflammasome but Is Independent of Caspase-1. Journal of Immunology, 2009, 182, 5052-5062.	0.4	130
28	Type I IFN Drives a Distinctive Dendritic Cell Maturation Phenotype That Allows Continued Class II MHC Synthesis and Antigen Processing. Journal of Immunology, 2012, 188, 3116-3126.	0.4	125
29	Circulating <scp>CD</scp> 4 ⁺ and <scp>CD</scp> 8 ⁺ T cells are activated in inflammatory bowel disease and are associated with plasma markers of inflammation. Immunology, 2013, 140, 87-97.	2.0	124
30	Mycobacterium tuberculosis lipoprotein LprG (Rv1411c) binds triacylated glycolipid agonists of Toll-like receptor 2. Nature Structural and Molecular Biology, 2010, 17, 1088-1095.	3.6	122
31	Processing of Mycobacterium tuberculosis Antigen 85B Involves Intraphagosomal Formation of Peptide–Major Histocompatibility Complex II Complexes and Is Inhibited by Live Bacilli that Decrease Phagosome Maturation. Journal of Experimental Medicine, 2001, 194, 1421-1432.	4.2	121
32	Neutrophils Process Exogenous Bacteria Via an Alternate Class I MHC Processing Pathway for Presentation of Peptides to T Lymphocytes. Journal of Immunology, 2001, 167, 2538-2546.	0.4	118
33	CpG DNA Induces Maturation of Dendritic Cells with Distinct Effects on Nascent and Recycling MHC-II Antigen-Processing Mechanisms. Journal of Immunology, 2000, 165, 6889-6895.	0.4	117
34	SARS-CoV-2 and ACE2: The biology and clinical data settling the ARB and ACEI controversy. EBioMedicine, 2020, 58, 102907.	2.7	110
35	Synthesis and Immunological Properties of N-Modified GM3 Antigens as Therapeutic Cancer Vaccines. Journal of Medicinal Chemistry, 2005, 48, 875-883.	2.9	109
36	Bacterial Heat Shock Proteins Promote CD91-Dependent Class I MHC Cross-Presentation of Chaperoned Peptide to CD8+ T Cells by Cytosolic Mechanisms in Dendritic Cells versus Vacuolar Mechanisms in Macrophages. Journal of Immunology, 2004, 172, 5277-5286.	0.4	108

#	Article	IF	CITATIONS
37	Bacterial Membrane Vesicles Mediate the Release of <i>Mycobacterium tuberculosis</i> Lipoglycans and Lipoproteins from Infected Macrophages. Journal of Immunology, 2015, 195, 1044-1053.	0.4	107
38	<i>Mycobacterium tuberculosis</i> Synergizes with ATP To Induce Release of Microvesicles and Exosomes Containing Major Histocompatibility Complex Class II Molecules Capable of Antigen Presentation. Infection and Immunity, 2010, 78, 5116-5125.	1.0	102
39	Inhibition of Major Histocompatibility Complex II Expression and Antigen Processing in Murine Alveolar Macrophages by Mycobacterium bovis BCG and the 19-Kilodalton Mycobacterial Lipoprotein. Infection and Immunity, 2004, 72, 2101-2110.	1.0	100
40	History and Outcomes of 50 Years of Physician–Scientist Training in Medical Scientist Training Programs. Academic Medicine, 2017, 92, 1390-1398.	0.8	98
41	Surfactant protein D enhances bacterial antigen presentation by bone marrow-derived dendritic cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L1453-L1463.	1.3	96
42	Toll-Like Receptor 2-Dependent Extracellular Signal-Regulated Kinase Signaling in Mycobacterium tuberculosis-Infected Macrophages Drives Anti-Inflammatory Responses and Inhibits Th1 Polarization of Responding T Cells. Infection and Immunity, 2015, 83, 2242-2254.	1.0	94
43	CCR5 promoter polymorphism determines macrophage CCR5 density and magnitude of HIV-1 propagation in vitro. Clinical Immunology, 2003, 108, 234-240.	1.4	92
44	The phoP locus influences processing and presentation of Salmonella typhimurium antigens by activated macrophages. Molecular Microbiology, 1995, 16, 465-476.	1.2	91
45	Molecular Detection of SARS-CoV-2 Infection in FFPE Samples and Histopathologic Findings in Fatal SARS-CoV-2 Cases. American Journal of Clinical Pathology, 2020, 154, 190-200.	0.4	91
46	B- and T-Cell Immune Responses to Pneumococcal Conjugate Vaccines: Divergence between Carrier- and Polysaccharide-Specific Immunogenicity. Infection and Immunity, 1999, 67, 4862-4869.	1.0	85
47	Regulation of Class II MHC Expression in APCs: Roles of Types I, III, and IV Class II Transactivator. Journal of Immunology, 2002, 169, 1326-1333.	0.4	85
48	Alternate Class I MHC Antigen Processing Is Inhibited by Toll-Like Receptor Signaling Pathogen-Associated Molecular Patterns:Mycobacterium tuberculosis19-kDa Lipoprotein, CpG DNA, and Lipopolysaccharide. Journal of Immunology, 2003, 171, 1413-1422.	0.4	83
49	CpG Oligodeoxynucleotides Act as Adjuvants for Pneumococcal Polysaccharide-Protein Conjugate Vaccines and Enhance Antipolysaccharide Immunoglobulin G2a (IgG2a) and IgG3 Antibodies. Infection and Immunity, 2000, 68, 1450-1456.	1.0	82
50	Bacterial Heat Shock Proteins Enhance Class II MHC Antigen Processing and Presentation of Chaperoned Peptides to CD4+ T Cells. Journal of Immunology, 2004, 173, 5130-5137.	0.4	79
51	<i>Mycobacterium tuberculosis</i> 19-kDa Lipoprotein Promotes Neutrophil Activation. Journal of Immunology, 2001, 167, 1542-1549.	0.4	78
52	MHC molecules and microbial antigen processing in phagosomes. Current Opinion in Immunology, 2009, 21, 98-104.	2.4	74
53	MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases. Journal of Experimental Medicine, 2014, 211, 887-907.	4.2	70
54	<i>Mycobacterium tuberculosis</i> Lipoproteins Directly Regulate Human Memory CD4 ⁺ T Cell Activation via Toll-Like Receptors 1 and 2. Infection and Immunity, 2011, 79, 663-673.	1.0	69

#	Article	IF	CITATIONS
55	Mycobacterium tuberculosis Lipoprotein LprG Binds Lipoarabinomannan and Determines Its Cell Envelope Localization to Control Phagolysosomal Fusion. PLoS Pathogens, 2014, 10, e1004471.	2.1	68
56	ERK Signaling Is Essential for Macrophage Development. PLoS ONE, 2015, 10, e0140064.	1.1	68
57	Exosomes derived from HIV-1-infected cells promote growth and progression of cancer via HIV TAR RNA. Nature Communications, 2018, 9, 4585.	5.8	67
58	Mechanisms of Antigen Processing. Immunological Reviews, 1988, 106, 77-92.	2.8	66
59	CCAAT/Enhancer-Binding Protein β and δ Binding to CIITA Promoters Is Associated with the Inhibition of CIITA Expression in Response to <i>Mycobacterium tuberculosis</i> 19-kDa Lipoprotein. Journal of Immunology, 2007, 179, 6910-6918.	0.4	66
60	<i>Mycobacterium tuberculosis</i> Membrane Vesicles Inhibit T Cell Activation. Journal of Immunology, 2017, 198, 2028-2037.	0.4	66
61	<i>Mycobacterium tuberculosis</i> and TLR2 Agonists Inhibit Induction of Type I IFN and Class I MHC Antigen Cross Processing by TLR9. Journal of Immunology, 2010, 185, 2405-2415.	0.4	63
62	A critical role for alpha-synuclein in development and function of T lymphocytes. Immunobiology, 2016, 221, 333-340.	0.8	60
63	Enhancement of Dendritic Cell Antigen Cross-Presentation by CpG DNA Involves Type I IFN and Stabilization of Class I MHC mRNA. Journal of Immunology, 2005, 175, 2244-2251.	0.4	59
64	<i>Mycobacterium tuberculosis</i> lipoprotein-induced association of TLR2 with protein kinase C ζ in lipid rafts contributes to reactive oxygen species-dependent inflammatory signalling in macrophages. Cellular Microbiology, 2008, 10, 1893-1905.	1.1	59
65	Mycobacterium tuberculosis ManLAM inhibits T-cell-receptor signaling by interference with ZAP-70, Lck and LAT phosphorylation. Cellular Immunology, 2012, 275, 98-105.	1.4	58
66	Phagocytic processing of antigens for presentation by MHC molecules. Trends in Cell Biology, 1995, 5, 105-109.	3.6	57
67	Late stages of hematopoiesis and B cell lymphopoiesis are regulated by α-synuclein, a key player in Parkinson's disease. Immunobiology, 2014, 219, 836-844.	0.8	55
68	Class I MHC presentation of exogenous antigens. Journal of Clinical Immunology, 1996, 16, 90-96.	2.0	54
69	Processing of Exogenous Antigens for Presentation by Class I MHC Molecules Involves Post-Golgi Peptide Exchange Influenced by Peptide-MHC Complex Stability and Acidic pH. Journal of Immunology, 2001, 167, 1274-1282.	0.4	54
70	Mycobacterium bovis BCG decreases MHC-II expression in vivo on murine lung macrophages and dendritic cells during aerosol infection. Cellular Immunology, 2009, 254, 94-104.	1.4	53
71	HIV-1 infection impairs cell cycle progression of CD4+ T cells without affecting early activation responses. Journal of Clinical Investigation, 2001, 108, 757-764.	3.9	53
72	Mouse Endothelial Cells Cross-Present Lymphocyte-Derived Antigen on Class I MHC via a TAP1- and Proteasome-Dependent Pathway. Journal of Immunology, 2005, 174, 7711-7715.	0.4	50

#	Article	IF	CITATIONS
73	<i>Mycobacterium tuberculosis</i> Heat Shock Fusion Protein Enhances Class I MHC Cross-Processing and -Presentation by B Lymphocytes. Journal of Immunology, 2005, 174, 5209-5214.	0.4	48
74	Phagocytic antigen processing and effects of microbial products on antigen processing and T-cell responses. Immunological Reviews, 1999, 168, 217-239.	2.8	47
75	Interaction of bacteria with antigen presenting cells: influences on antigen presentation and antibacterial immunity. Current Opinion in Immunology, 2003, 15, 112-119.	2.4	47
76	<i>Mycobacterium tuberculosis</i> Cell Wall Glycolipids Directly Inhibit CD4 ⁺ T-Cell Activation by Interfering with Proximal T-Cell-Receptor Signaling. Infection and Immunity, 2009, 77, 4574-4583.	1.0	46
77	TLR2 Signaling Depletes IRAK1 and Inhibits Induction of Type I IFN by TLR7/9. Journal of Immunology, 2012, 188, 1019-1026.	0.4	45
78	Differential Expression of Interleukin-2 and Gamma Interferon in Human Immunodeficiency Virus Disease. Journal of Virology, 2001, 75, 9983-9985.	1.5	44
79	Tapasinâ^'/â^' and TAP1â^'/â^' Macrophages Are Deficient in Vacuolar Alternate Class I MHC (MHC-I) Processing due to Decreased MHC-I Stability at Phagolysosomal pH. Journal of Immunology, 2003, 170, 5825-5833.	0.4	44
80	Role of Phagosomes and Major Histocompatibility Complex Class II (MHC-II) Compartment in MHC-II Antigen Processing of Mycobacterium tuberculosis in Human Macrophages. Infection and Immunity, 2006, 74, 1621-1630.	1.0	42
81	Novel Quorum-Quenching Agents Promote Methicillin-Resistant Staphylococcus aureus (MRSA) Wound Healing and Sensitize MRSA to β-Lactam Antibiotics. Antimicrobial Agents and Chemotherapy, 2015, 59, 1512-1518.	1.4	42
82	Interferon-Alpha Administration Enhances CD8+ T Cell Activation in HIV Infection. PLoS ONE, 2012, 7, e30306.	1.1	42
83	T-cell hybridomas from HLA-transgenic mice as tools for analysis of human antigen processing. Journal of Immunological Methods, 2003, 281, 129-142.	0.6	41
84	Desensitization to type I interferon in HIV-1 infection correlates with markers of immune activation and disease progression. Blood, 2009, 113, 5497-5505.	0.6	41
85	Processing and presentation of intact hen egg-white lysozyme by dendritic cells. European Journal of Immunology, 1992, 22, 2347-2352.	1.6	40
86	Phagosomal Processing of Mycobacterium tuberculosis Antigen 85B Is Modulated Independently of Mycobacterial Viability and Phagosome Maturation. Infection and Immunity, 2005, 73, 1097-1105.	1.0	40
87	Antigen processing and intracellular traffic of antigens and MHC molecules. Current Opinion in Cell Biology, 1993, 5, 596-605.	2.6	39
88	Electroporation of exogenous antigen into the cytosol for antigen processing and class I major histocompatibility complex (MHC) presentation: weak base amines and hypothermia (18°C) inhibit the class I MHC processing pathway. European Journal of Immunology, 1992, 22, 1865-1869.	1.6	37
89	Impaired Monocyte Maturation in Response to CpG Oligodeoxynucleotide Is Related to Viral RNA Levels in Human Immunodeficiency Virus Disease and Is at Least Partially Mediated by Deficiencies in Alpha/Beta Interferon Responsiveness and Production. Journal of Virology, 2005, 79, 4109-4119.	1.5	37
90	Low-temperature inhibition of antigen processing and iron uptake from transferrin: Deficits in endosome functions at 18 ŰC. European Journal of Immunology, 1990, 20, 323-329.	1.6	36

#	Article	IF	CITATIONS
91	Phagocytic processing of antigens for presentation by class II major histocompatibility complex molecules. Cellular Microbiology, 1999, 1, 205-214.	1.1	36
92	Phosphoantigen Presentation by Macrophages to Mycobacterium tuberculosis- Reactive Vγ9Vδ2 + T Cells: Modulation by Chloroquine. Infection and Immunity, 2002, 70, 4019-4027.	1.0	35
93	CpG-B ODNs potently induce low levels of IFN-αβ and induce IFN-αβ-dependent MHC-I cross-presentation in DCs as effectively as CpG-A and CpG-C ODNs. Journal of Leukocyte Biology, 2007, 81, 1075-1085.	1.5	35
94	Mannose-Capped Lipoarabinomannan from <i>Mycobacterium tuberculosis</i> Induces CD4+ T Cell Anergy via GRAIL. Journal of Immunology, 2016, 196, 691-702.	0.4	35
95	Interferon-alphabeta mediates partial control of early pulmonary Mycobacterium bovis bacillus Calmette-Guerin infection. Immunology, 2006, 118, 39-49.	2.0	34
96	Interferon- \hat{l}_{\pm} differentially rescues CD4 and CD8 T cells from apoptosis in HIV infection. Aids, 2006, 20, 1379-1389.	1.0	34
97	Impaired Naive and Memory B-Cell Responsiveness to TLR9 Stimulation in Human Immunodeficiency Virus Infection. Journal of Virology, 2008, 82, 7837-7845.	1.5	34
98	Phosphatidylinositol Mannoside from <i>Mycobacterium tuberculosis</i> Binds α5β1 Integrin (VLA-5) on CD4+ T Cells and Induces Adhesion to Fibronectin. Journal of Immunology, 2006, 177, 2959-2968.	0.4	32
99	TLR2 engagement on CD4 ⁺ T cells enhances effector functions and protective responses to <i>Mycobacterium tuberculosis</i> . European Journal of Immunology, 2014, 44, 1410-1421.	1.6	32
100	Inhibition of Class II Major Histocompatibility Complex Antigen Processing by <i>Escherichia coli</i> Heat-Labile Enterotoxin Requires an Enzymatically Active A Subunit. Infection and Immunity, 1998, 66, 3480-3484.	1.0	32
101	ATP and Control of Intracellular Growth of Mycobacteria by T Cells. Infection and Immunity, 2002, 70, 6456-6459.	1.0	31
102	Impaired T-cell responses to sphingosine-1-phosphate in HIV-1 infected lymph nodes. Blood, 2013, 121, 2914-2922.	0.6	31
103	Systemic deficits in transporter for antigen presentation (TAP)â€1 or proteasome subunit LMP2 have little or no effect on tumor incidence. International Journal of Cancer, 2001, 91, 366-372.	2.3	30
104	Antigen processing and CD24 expression determine antigen presentation by splenic CD4 ⁺ and CD8 ⁺ dendritic cells. Immunology, 2008, 123, 447-455.	2.0	30
105	Phagosomes Acquire Nascent and Recycling Class II MHC Molecules but Primarily Use Nascent Molecules in Phagocytic Antigen Processing. Journal of Immunology, 2000, 164, 5103-5112.	0.4	29
106	Differential Effects of Hepatitis C Virus JFH1 on Human Myeloid and Plasmacytoid Dendritic Cells. Journal of Virology, 2009, 83, 5693-5707.	1.5	29
107	Presentation of Soluble Antigens to CD8+ T Cells by CpG Oligodeoxynucleotide-Primed Human Naive B Cells. Journal of Immunology, 2011, 186, 2080-2086.	0.4	28
108	Mycobacterium tuberculosis Lipoprotein and Lipoglycan Binding to Toll-Like Receptor 2 Correlates with Agonist Activity and Functional Outcomes. Infection and Immunity, 2018, 86, .	1.0	28

#	Article	IF	CITATIONS
109	Pathways of antigen processing. Current Opinion in Immunology, 1991, 3, 3-9.	2.4	27
110	Responsiveness to IL-7 but not to IFN-α is diminished in CD4+ T cells from treated HIV infected patients who experience poor CD4+ T-cell recovery. Aids, 2016, 30, 2033-2042.	1.0	25
111	Antigen Processing of the Heptavalent Pneumococcal Conjugate Vaccine Carrier Protein CRM 197 Differs Depending on the Serotype of the Attached Polysaccharide. Infection and Immunity, 2003, 71, 4186-4189.	1.0	24
112	<i>Mycobacterium tuberculosis</i> Promotes HIV <i>trans</i> -Infection and Suppresses Major Histocompatibility Complex Class II Antigen Processing by Dendritic Cells. Journal of Virology, 2010, 84, 8549-8560.	1.5	24
113	Class II MHC antigen presentation defect in neonatal monocytes is not correlated with decreased MHC-II expression. Cellular Immunology, 2006, 243, 96-106.	1.4	22
114	Clinical and biologic heterogeneity of hereditary nonpolyposis colorectal cancer. International Journal of Cancer, 2001, 95, 323-328.	2.3	19
115	Intracellular organelles involved in antigen processing and the binding of peptides to class II MHC molecules. Seminars in Immunology, 1995, 7, 355-360.	2.7	17
116	CpC-B Oligodeoxynucleotides Inhibit TLR-Dependent and -Independent Induction of Type I IFN in Dendritic Cells. Journal of Immunology, 2010, 184, 3367-3376.	0.4	17
117	Modulation of Pulmonary Dendritic Cell Function during Mycobacterial Infection. Infection and Immunity, 2008, 76, 671-677.	1.0	15
118	Surface ultrastructure of the cornea and adjacent epidermis during metamorphosis ofRana pipiens A scanning electron microscopic study. Journal of Morphology, 1980, 166, 323-335.	0.6	14
119	CpG DNA Induces a Class II Transactivator-Independent Increase in Class II MHC by Stabilizing Class II MHC mRNA in B Lymphocytes. Journal of Immunology, 2003, 171, 2320-2325.	0.4	14
120	Plasmacytoid Dendritic Cells Mediate Synergistic Effects of HIV and Lipopolysaccharide on CD27 ⁺ IgD [–] Memory B Cell Apoptosis. Journal of Virology, 2014, 88, 11430-11441.	1.5	14
121	Interferon-αinhibits CD4 T cell responses to interleukin-7 and interleukin-2 and selectively interferes with Akt signaling. Journal of Leukocyte Biology, 2015, 97, 1139-1146.	1.5	14
122	Arrhythmias in Cardiac Sarcoidosis Bench to Bedside. Circulation: Arrhythmia and Electrophysiology, 2021, 14, e009203.	2.1	14
123	Modulation of Naive CD4 + T-Cell Responses to an Airway Antigen during Pulmonary Mycobacterial Infection. Infection and Immunity, 2007, 75, 2260-2268.	1.0	13
124	Localization of peptide/MHC class II complexes in macrophages following antigen processing of viableStreptococcus pyogenes. European Journal of Immunology, 2003, 33, 2353-2360.	1.6	11
125	gp96 Leads the Way for Toll-like Receptors. Immunity, 2007, 26, 141-143.	6.6	11
126	Upregulation of Local Hepcidin Contributes to Iron Accumulation in Alzheimer's Disease Brains. Journal of Alzheimer's Disease, 2021, 82, 1487-1497.	1.2	11

#	Article	IF	CITATIONS
127	Proteomics and Network Analyses Reveal Inhibition of Aktâ€mTOR Signaling in CD4 ⁺ T Cells by <i>Mycobacterium tuberculosis</i> Mannoseâ€Capped Lipoarabinomannan. Proteomics, 2017, 17, 1700233.	1.3	10
128	Ultrastructural changes in peripheral blood leukocytes in α-synuclein knockout mice. Blood Cells, Molecules, and Diseases, 2018, 73, 33-37.	0.6	10
129	Genetically Associated CD16+56â^' Natural Killer Cell Interferon (IFN)–αR Expression Regulates Signaling and Is Implicated in IFN-α–Induced Hepatitis C Virus Decline. Journal of Infectious Diseases, 2012, 205, 1131-1141.	1.9	8
130	Toll-Like Receptor 2-Tpl2-Dependent ERK Signaling Drives Inverse Interleukin 12 Regulation in Dendritic Cells and Macrophages. Infection and Immunity, 2020, 89, .	1.0	7
131	Rv2468c, a novel <i>Mycobacterium tuberculosis</i> protein that costimulates human CD4+ T cells through VLA-5. Journal of Leukocyte Biology, 2011, 91, 311-320.	1.5	6
132	α‣ynuclein concentration increases over time in plasma supernatant of single donor platelets. European Journal of Haematology, 2018, 101, 630-634.	1.1	6
133	Guidance for Rebooting Electrophysiology Through the COVID-19 Pandemic From the Heart Rhythm Society and the American Heart Association Electrocardiography and Arrhythmias Committee of the Council on Clinical Cardiology. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e008999.	2.1	6
134	Antigen processing and recognition. Current Opinion in Immunology, 2005, 17, 55-57.	2.4	5
135	Development of immune-complex glomerulonephritis in athymic mice: T cells are not required for the genesis of glomerular injury. Laboratory Investigation, 2005, 85, 354-363.	1.7	4
136	B Cell Development Is Regulated By a-Synuclein, a Key Player In Parkinson's Disease. Blood, 2013, 122, 785-785.	0.6	3
137	Differences in antigen processing with haplotype-mismatched MHC class II heterodimers: AαdAβb heterodimers participate in early endosomal processing. European Journal of Immunology, 2002, 32, 2726-2736.	1.6	2
138	Initial assessment of α-synuclein structure in platelets. Journal of Thrombosis and Thrombolysis, 2021, , 1.	1.0	2
139	Use of a wholeâ€cell ELISA to detect additional antibodies in setting of suspected heparinâ€induced thrombocytopenia. European Journal of Haematology, 2019, 103, 99-106.	1.1	1
140	In Reply to Sun et al. Academic Medicine, 2018, 93, 150-151.	0.8	0
141	Development Of Mature T Lymphocytes Requires Alpha-Synuclein. Blood, 2013, 122, 3490-3490.	0.6	0
142	Alpha-Synuclein Deficiency Is Associated with Defective Th2 Differentiation and Enhanced Regulatory T Cell Development. Blood, 2014, 124, 1424-1424.	0.6	0