Hans-Martin Jäck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5426480/publications.pdf

Version: 2024-02-01

122	8,087	40	82
papers	citations	h-index	g-index
133	133 docs citations	133	15194
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	A pair of noncompeting neutralizing human monoclonal antibodies protecting from disease in a SARSâ€CoVâ€⊋ infection model. European Journal of Immunology, 2022, 52, 770-783.	2.9	24
2	Singleâ€ell resolution of plasma cell fate programming in health and disease. European Journal of Immunology, 2022, 52, 10-23.	2.9	8
3	No evidence for increased cell entry or antibody evasion by Delta sublineage AY.4.2. Cellular and Molecular Immunology, 2022, 19, 449-452.	10.5	7
4	The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic. Cell, 2022, 185, 447-456.e11.	28.9	736
5	$Kr\tilde{A}^{1/4}$ ppel-like factor 2 controls IgA plasma cell compartmentalization and IgA responses. Mucosal Immunology, 2022, 15, 668-682.	6.0	5
6	Augmented neutralization of SARS oVâ€2 Omicron variant by boost vaccination and monoclonal antibodies. European Journal of Immunology, 2022, 52, 970-977.	2.9	10
7	IRF4 deficiency vulnerates B-cell progeny for leukemogenesis via somatically acquired Jak3 mutations conferring IL-7 hypersensitivity. Cell Death and Differentiation, 2022, 29, 2163-2176.	11.2	5
8	Efficient antibody evasion but reduced ACE2 binding by the emerging SARS-CoV-2 variant B.1.640.2. , 2022, , .		0
9	TFG is required for autophagy flux and to prevent endoplasmic reticulum stress in CH12 B lymphoma cells. Autophagy, 2021, 17, 2238-2256.	9.1	10
10	Network- and systems-based re-engineering of dendritic cells with non-coding RNAs for cancer immunotherapy. Theranostics, 2021, 11, 1412-1428.	10.0	8
11	DGCR8 deficiency impairs macrophage growth and unleashes the interferon response to mycobacteria. Life Science Alliance, 2021, 4, e202000810.	2.8	0
12	SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell, 2021, 184, 2384-2393.e12.	28.9	848
13	SARS-CoV-2 mutations acquired in mink reduce antibody-mediated neutralization. Cell Reports, 2021, 35, 109017.	6.4	77
14	SARS-CoV-2 variant B.1.617 is resistant to bamlanivimab and evades antibodies induced by infection and vaccination. Cell Reports, 2021, 36, 109415.	6.4	206
15	B.1.617.2 enters and fuses lung cells with increased efficiency and evades antibodies induced by infection and vaccination. Cell Reports, 2021, 37, 109825.	6.4	73
16	A surrogate cellâ€based SARSâ€CoVâ€⊋ spike blocking assay. European Journal of Immunology, 2021, 51, 2665-2676.	2.9	3
17	Increased risk of chronic fatigue and hair loss following COVID-19 in individuals with hypohidrotic ectodermal dysplasia. Orphanet Journal of Rare Diseases, 2021, 16, 373.	2.7	2
18	A Barcoded Flow Cytometric Assay to Explore the Antibody Responses Against SARS-CoV-2 Spike and Its Variants. Frontiers in Immunology, 2021, 12, 730766.	4.8	7

#	Article	IF	Citations
19	miRâ€148a controls metabolic programming and survival of mature CD19â€negative plasma cells in mice. European Journal of Immunology, 2021, 51, 1089-1109.	2.9	11
20	Immunizations with diverse sarbecovirus receptor-binding domains elicit SARS-CoV-2 neutralizing antibodies against a conserved site of vulnerability. Immunity, 2021, 54, 2908-2921.e6.	14.3	35
21	Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). European Journal of Immunology, 2021, 51, 2708-3145.	2.9	198
22	Endothelial dysfunction contributes to severe COVID-19 in combination with dysregulated lymphocyte responses and cytokine networks. Signal Transduction and Targeted Therapy, 2021, 6, 418.	17.1	54
23	IMU-838, a Developmental DHODH Inhibitor in Phase II for Autoimmune Disease, Shows Anti-SARS-CoV-2 and Broad-Spectrum Antiviral Efficacy In Vitro. Viruses, 2020, 12, 1394.	3.3	35
24	YY1 control of mitochondrialâ€related genes does not account for regulation of immunoglobulin class switch recombination in mice. European Journal of Immunology, 2020, 50, 822-838.	2.9	7
25	Unraveling the mysteries of plasma cells. Advances in Immunology, 2020, 146, 57-107.	2.2	18
26	Complement Activation in Kidneys of Patients With COVID-19. Frontiers in Immunology, 2020, 11, 594849.	4.8	58
27	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
28	The Impact of Hyperosmolality on Activation and Differentiation of B Lymphoid Cells. Frontiers in Immunology, 2019, 10, 828.	4.8	14
29	A web platform for the network analysis of high-throughput data in melanoma and its use to investigate mechanisms of resistance to anti-PD1 immunotherapy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2315-2328.	3.8	18
30	Eosinophils are not essential for maintenance of murine plasma cells in the bone marrow. European Journal of Immunology, 2018, 48, 822-828.	2.9	38
31	miRNA meets plasma cells "How tiny RNAs control antibody responses― Clinical Immunology, 2018, 186, 3-8.	3.2	12
32	Transcription factor YY1 can control AIDâ€mediated mutagenesis in mice. European Journal of Immunology, 2018, 48, 273-282.	2.9	5
33	Regulation of Energy Metabolism during Early B Lymphocyte Development. International Journal of Molecular Sciences, 2018, 19, 2192.	4.1	25
34	A defined metabolic state in pre B cells governs B-cell development and is counterbalanced by Swiprosin-2/EFhd1. Cell Death and Differentiation, 2017, 24, 1239-1252.	11.2	52
35	A new staining protocol for detection of murine antibodyâ€secreting plasma cell subsets by flow cytometry. European Journal of Immunology, 2017, 47, 1389-1392.	2.9	112
36	Guidelines for the use of flow cytometry and cell sorting in immunological studies [*] . European Journal of Immunology, 2017, 47, 1584-1797.	2.9	505

#	Article	IF	CITATIONS
37	Interleukinâ€36 receptor mediates the crosstalk between plasma cells and synovial fibroblasts. European Journal of Immunology, 2017, 47, 2101-2112.	2.9	26
38	The role of the miRâ€148/â€152 family in physiology and disease. European Journal of Immunology, 2017, 47, 2026-2038.	2.9	87
39	YY1 controls $\hat{E14}$ -3 \hat{a} e2RR DNA loop formation and immunoglobulin heavy chain class switch recombination. Blood Advances, 2016, 1, 15-20.	5.2	12
40	Dicer ablation in osteoblasts by Runx2 driven cre-loxP recombination affects bone integrity, but not glucocorticoid-induced suppression of bone formation. Scientific Reports, 2016, 6, 32112.	3.3	23
41	The microprocessor component, DGCR8, is essential for early Bâ€eell development in mice. European Journal of Immunology, 2016, 46, 2710-2718.	2.9	21
42	Essential control of early B-cell development by Mef2 transcription factors. Blood, 2016, 127, 572-581.	1.4	65
43	Prolonged Ex vivo expansion and differentiation of naÃ-ve murine CD43 ^{â-'} B splenocytes. Biotechnology Progress, 2016, 32, 978-989.	2.6	4
44	YY1 Is Required for Germinal Center B Cell Development. PLoS ONE, 2016, 11, e0155311.	2.5	25
45	miRâ€148a promotes plasma cell differentiation and targets the germinal center transcription factors Mitf and Bach2. European Journal of Immunology, 2015, 45, 1206-1215.	2.9	70
46	APOBEC3 enzymes restrict marginal zone B cells. European Journal of Immunology, 2015, 45, 695-704.	2.9	12
47	miRâ€148a is upregulated by Twist1 and Tâ€bet and promotes Th1â€cell survival by regulating the proapoptotic gene Bim. European Journal of Immunology, 2015, 45, 1192-1205.	2.9	56
48	KLF2– A Negative Regulator of Pre-B Cell Clonal Expansion and B Cell Activation. PLoS ONE, 2014, 9, e97953.	2.5	26
49	Towards the Generation of B-Cell Receptor Retrogenic Mice. PLoS ONE, 2014, 9, e109199.	2.5	12
50	Swiprosinâ€1/EFhd2 limits germinal center responses and humoral type 2 immunity. European Journal of Immunology, 2014, 44, 3206-3219.	2.9	17
51	Contribution of micro <scp>RNA</scp> 24–3p and <scp>E</scp> rk1/2 to interleukinâ€6â€mediated plasma cell survival. European Journal of Immunology, 2013, 43, 3028-3037.	2.9	18
52	MicroRNAs and Biomarker Discovery. , 2013, , 379-392.		0
53	Monoclonal Antibodies to Discriminate the EF Hand Containing Calcium Binding Adaptor Proteins EFhd1 and EFhd2. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2013, 32, 237-245.	1.6	9
54	YY1 Controls Immunoglobulin Class Switch Recombination and Nuclear Activation-Induced Deaminase Levels. Molecular and Cellular Biology, 2012, 32, 1542-1554.	2.3	34

#	Article	IF	Citations
55	Lytic Epstein–Barr virus infection in epithelial cells but not in B-lymphocytes is dependent on Blimp1. Journal of General Virology, 2012, 93, 1059-1064.	2.9	18
56	HnRNP L and L-like cooperate in multiple-exon regulation of CD45 alternative splicing. Nucleic Acids Research, 2012, 40, 5666-5678.	14.5	45
57	miRâ€9 enhances ILâ€2 production in activated human CD4 ⁺ T cells by repressing Blimpâ€1. European Journal of Immunology, 2012, 42, 2100-2108.	2.9	42
58	LINE-1 Retroelements Complexed and Inhibited by Activation Induced Cytidine Deaminase. PLoS ONE, 2012, 7, e49358.	2.5	18
59	T-cell receptor diversity prevents T-cell lymphoma development. Leukemia, 2012, 26, 2499-2507.	7.2	38
60	microRNAs in rheumatoid arthritis: midget RNAs with a giant impact. Annals of the Rheumatic Diseases, 2011, 70, i92-i96.	0.9	64
61	TRPC1 transcript variants, inefficient nonsense-mediated decay and low up-frameshift-1 in vascular smooth muscle cells. BMC Molecular Biology, 2011, 12, 30.	3.0	6
62	Proteome profiling suggests a proâ€inflammatory role for plasma cells through release of highâ€mobility group box 1 protein. Proteomics, 2011, 11, 1228-1237.	2.2	8
63	A facile method to increase titers of miRNAâ€encoding retroviruses by inhibition of the RNaselll enzyme Drosha. European Journal of Immunology, 2011, 41, 549-551.	2.9	11
64	B cell homeostasis and plasma cell homing controlled by Kr $\tilde{A}\frac{1}{4}$ ppel-like factor 2. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 710-715.	7.1	97
65	Pro-B cells sense productive immunoglobulin heavy chain rearrangement irrespective of polypeptide production. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10644-10649.	7.1	23
66	PcG recruitment by the YY1 REPO domain can be mediated by Yaf2. Journal of Cellular Biochemistry, 2010, 109, 478-486.	2.6	39
67	Serum microRNAs as powerful cancer biomarkers. Biochimica Et Biophysica Acta: Reviews on Cancer, 2010, 1806, 200-207.	7.4	170
68	CtBP levels control intergenic transcripts, PHO/YY1 DNA binding, and PcG recruitment to DNA. Journal of Cellular Biochemistry, 2010, 110, 62-69.	2.6	13
69	Adjusting transgene expression levels in lymphocytes with a set of inducible promoters. Journal of Gene Medicine, 2010, 12, 501-515.	2.8	25
70	Two Forms of Activation-Induced Cytidine Deaminase Differing in Their Ability to Bind Agarose. PLoS ONE, 2010, 5, e8883.	2.5	6
71	New Surprises from the Deep — The Family of Small Regulatory RNAs Increases. Scientific World Journal, The, 2010, 10, 1239-1243.	2.1	15
72	BCL6 is critical for the development of a diverse primary B cell repertoire. Journal of Experimental Medicine, 2010, 207, 1209-1221.	8.5	108

#	Article	IF	CITATIONS
73	The Early Marginal Zone B Cell-Initiated T-Independent Type 2 Response Resists the Proteasome Inhibitor Bortezomib. Journal of Immunology, 2010, 185, 5637-5647.	0.8	14
74	The pre-B cell receptor: turning autoreactivity into self-defense. Trends in Immunology, 2010, 31, 176-183.	6.8	26
75	Swiprosin-1/EFhd2 Controls B Cell Receptor Signaling through the Assembly of the B Cell Receptor, Syk, and Phospholipase C \hat{I}^3 2 in Membrane Rafts. Journal of Immunology, 2010, 184, 3665-3676.	0.8	56
76	Equal transcription rates of productively and nonproductively rearranged immunoglobulin $\hat{l}\frac{1}{4}$ heavy chain alleles in a pro-B cell line. Rna, 2009, 15, 1021-1028.	3.5	16
77	Pre–B cell receptor–mediated cell cycle arrest in Philadelphia chromosome–positive acute lymphoblastic leukemia requires <i>IKAROS</i> function. Journal of Experimental Medicine, 2009, 206, 1739-1753.	8.5	120
78	Early onset of autoimmune disease by the retroviral integrase inhibitor raltegravir. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20865-20870.	7.1	38
79	Expression of BLIMP1/PRMT5and concurrent histone H2A/H4 arginine 3 dimethylation in fetal germ cells, CIS/IGCNU and germ cell tumors. BMC Developmental Biology, 2008, 8, 106.	2.1	107
80	Transcriptome analysis in primary B lymphoid precursors following induction of the pre-B cell receptor. Molecular Immunology, 2008, 45, 362-375.	2.2	31
81	A Unique Role for the î»5 Nonimmunoglobulin Tail in Early B Lymphocyte Development. Journal of Immunology, 2008, 181, 3232-3242.	0.8	27
82	Identifying Substrates of mRNA Decay Factors by a Combined RNA Interference and DNA Microarray Approach. Methods in Enzymology, 2008, 449, 263-294.	1.0	0
83	lg Heavy Chain Promotes Mature B Cell Survival in the Absence of Light Chain. Journal of Immunology, 2007, 179, 1659-1668.	0.8	12
84	Extensive Immunoglobulin Production Sensitizes Myeloma Cells for Proteasome Inhibition. Cancer Research, 2007, 67, 1783-1792.	0.9	373
85	The pre-B cell receptor and its ligands – it takes two to tango. Signal Transduction, 2007, 7, 299-310.	0.4	1
86	After shrinkage apoptotic cells expose internal membrane-derived epitopes on their plasma membranes. Cell Death and Differentiation, 2007, 14, 733-742.	11.2	77
87	Human INT6/eIF3e is required for nonsenseâ€mediated mRNA decay. EMBO Reports, 2007, 8, 596-602.	4.5	49
88	Powered by pairing: The surrogate light chain amplifies immunoglobulin heavy chain signaling and pre-selects the antibody repertoire. Seminars in Immunology, 2006, 18, 44-55.	5.6	44
89	The origin of signals predicating life and development of B cell precursors: Inside out or outside in?. Seminars in Immunology, 2006, $18, 1$.	5.6	0
90	Double staining of proteins after separation in SDS gels with Ruthenium Bathophenantroline Disulfonate and Silver is compatible with MALDI-TOF mass spectrometry. Signal Transduction, 2006, 6, 185-189.	0.4	3

#	Article	IF	Citations
91	Genomic suppression of murine B29/lg- \hat{l}^2 promoter-driven transgenes. European Journal of Immunology, 2006, 36, 3324-3333.	2.9	2
92	A gene regulation system with four distinct expression levels. Journal of Gene Medicine, 2006, 8, 1037-1047.	2.8	31
93	Polycomb recruitment to DNA in vivo by the YY1 REPO domain. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19296-19301.	7.1	171
94	hUPF2 Silencing Identifies Physiologic Substrates of Mammalian Nonsense-Mediated mRNA Decay. Molecular and Cellular Biology, 2006, 26, 1272-1287.	2.3	212
95	Stages of Germinal Center Transit Are Defined by B Cell Transcription Factor Coexpression and Relative Abundance. Journal of Immunology, 2006, 177, 6930-6939.	0.8	119
96	VH Replacement Rescues Progenitor B Cells with Two Nonproductive VDJ Alleles. Journal of Immunology, 2006, 177, 7007-7014.	0.8	26
97	Evidence of abortive plasma cell differentiation in Hodgkin and Reed-Sternberg cells of classical Hodgkin lymphoma. Hematological Oncology, 2005, 23, 127-132.	1.7	55
98	Lipid Rafts Associate with Intracellular B Cell Receptors and Exhibit a B Cell Stage-Specific Protein Composition. Journal of Immunology, 2005, 174, 3508-3517.	0.8	74
99	CD44 is dispensable for B lymphopoiesis. Immunology Letters, 2004, 95, 71-75.	2.5	4
100	Three-dimensional modeling of a pre-B-cell receptor. Molecular Immunology, 2004, 40, 1263-1272.	2.2	18
101	Notch1 enhances B-cell receptor-induced apoptosis in mature activated B cells without affecting cell cycle progression and surface IgM expression. Cell Death and Differentiation, 2003, 10, 833-844.	11.2	27
102	Cutting Edge: Signaling and Cell Surface Expression of a $\hat{l}\frac{1}{4}$ H Chain in the Absence of \hat{l} »5: A Paradigm Revisited. Journal of Immunology, 2003, 171, 3343-3347.	0.8	68
103	Interaction of Murine Precursor B Cell Receptor with Stroma Cells Is Controlled by the Unique Tail of λ5 and Stroma Cell-Associated Heparan Sulfate. Journal of Immunology, 2003, 171, 2338-2348.	0.8	99
104	Selection of Ig $\hat{1}\frac{1}{4}$ Heavy Chains by Complementarity-Determining Region 3 Length and Amino Acid Composition. Journal of Immunology, 2003, 171, 4663-4671.	0.8	26
105	Immunoglobulin $\hat{l}^{1}\!\!/\!\!4$ Heavy Chains Do Not Mediate Tyrosine Phosphorylation of Ig \hat{l} ± from the ER- <i>cis-</i> fi>Colgi. Journal of Immunology, 2003, 171, 3091-3101.	0.8	28
106	Identification of delta helicase as the bovine homolog of HUPF1: demonstration of an interaction with the third subunit of DNA polymerase delta. Nucleic Acids Research, 2002, 30, 2232-2243.	14.5	28
107	A colloidal silver staining–destaining method for precise assignment of immunoreactive spots in two-dimensional protein patterns. Analytical Biochemistry, 2002, 308, 381-387.	2.4	20
108	Surrogate Light Chain-Mediated Interaction of a Soluble Pre-B Cell Receptor with Adherent Cell Lines. Journal of Immunology, 2001, 167, 6403-6411.	0.8	61

#	Article	IF	Citations
109	A B220–, CD19– population of B cells in the peripheral blood of quasimonoclonal mice. International Immunology, 2000, 12, 29-35.	4.0	17
110	Cycloheximide, a New Tool to Dissect Specific Steps in ER-Associated Degradation of Different Substrates. Biological Chemistry, 1999, 380, 669-77.	2.5	9
111	Identification of YY1 sequences necessary for association with the nuclear matrix and for transcriptional repression functions. Journal of Cellular Biochemistry, 1998, 68, 484-499.	2.6	57
112	Characterization of myocyte enhancer factor 2 (MEF2) expression in B and T cells: MEF2C is a B cell-restricted transcription factor in lymphocytes. Molecular Immunology, 1998, 35, 445-458.	2.2	72
113	Construction and expression of a soluble form of human CD30 ligand with functional activity. Journal of Leukocyte Biology, 1998, 63, 752-757.	3.3	11
114	Interleukin-12 Activates Interferon-? Production by Targeted Activation of CD30+T cells. Annals of the New York Academy of Sciences, 1996, 795, 127-136.	3.8	1
115	Roles of heavy and light chains in IgM polymerization Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 4912-4916.	7.1	20
116	Ig ν Heavy Chains with V _H 81X Variable Regions Do Not Associate with λ5 ^a . Annals of the New York Academy of Sciences, 1995, 764, 39-42.	3.8	17
117	A different sort of Mott cell Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 11688-11691.	7.1	17
118	Immunoglobulinî»Gene Rearrangement Can PrecedelºGene Rearrangement. Autoimmunity, 1990, 1, 53-57.	0.6	22
119	Circular DNA is a product of the immunoglobulin class switch rearrangement. Nature, 1990, 345, 452-456.	27.8	205
120	Translation affects immunoglobulin mRNA stability. European Journal of Immunology, 1989, 19, 843-847.	2.9	53
121	Measurements of Mutation Rates in B Lymphocytes. Immunological Reviews, 1987, 96, 91-107.	6.0	48
122	Characterization of solubilized insulin receptors from rat liver microsomes. Existence of two receptor species with different binding properties. FEBS Journal, 1986, 154, 281-287.	0.2	25