
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5426436/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative targeted absolute proteomics of human blood–brain barrier transporters and receptors. Journal of Neurochemistry, 2011, 117, 333-345.	3.9	683
2	Quantitative Atlas of Membrane Transporter Proteins: Development and Application of a Highly Sensitive Simultaneous LC/MS/MS Method Combined with Novel In-silico Peptide Selection Criteria. Pharmaceutical Research, 2008, 25, 1469-1483.	3.5	453
3	Contribution of Carrier-Mediated Transport Systems to the Blood–Brain Barrier as a Supporting and Protecting Interface for the Brain; Importance for CNS Drug Discovery and Development. Pharmaceutical Research, 2007, 24, 1745-1758.	3.5	411
4	Simultaneous Absolute Protein Quantification of Transporters, Cytochromes P450, and UDP-Glucuronosyltransferases as a Novel Approach for the Characterization of Individual Human Liver: Comparison with mRNA Levels and Activities. Drug Metabolism and Disposition, 2012, 40, 83-92.	3.3	373
5	In vitro models for the blood–brain barrier. Toxicology in Vitro, 2005, 19, 299-334.	2.4	365
6	Transcriptomic and Quantitative Proteomic Analysis of Transporters and Drug Metabolizing Enzymes in Freshly Isolated Human Brain Microvessels. Molecular Pharmaceutics, 2011, 8, 1332-1341.	4.6	324
7	A pericyteâ€derived angiopoietinâ€1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tieâ€2 activation <i>in vitro</i> . Journal of Neurochemistry, 2004, 89, 503-513.	3.9	299
8	P-glycoprotein as the drug efflux pump in primary cultured bovine brain capillary endothelial cells. Life Sciences, 1992, 51, 1427-1437.	4.3	253
9	Inducible Nitric Oxide Synthase Isoform Is a Key Mediator of Leukostasis and Blood-Retinal Barrier Breakdown in Diabetic Retinopathy. , 2007, 48, 5257.		220
10	Thioredoxin interacting protein (TXNIP) induces inflammation through chromatin modification in retinal capillary endothelial cells under diabetic conditions. Journal of Cellular Physiology, 2009, 221, 262-272.	4.1	214
11	Quantitative Atlas of Blood–Brain Barrier Transporters, Receptors, and Tight Junction Proteins in Rats and Common Marmoset. Journal of Pharmaceutical Sciences, 2013, 102, 3343-3355.	3.3	198
12	Quantitative Membrane Protein Expression at the Blood–Brain Barrier of Adult and Younger Cynomolgus Monkeys. Journal of Pharmaceutical Sciences, 2011, 100, 3939-3950.	3.3	197
13	Role of blood-brain barrier organic anion transporter 3 (OAT3) in the efflux of indoxyl sulfate, a uremic toxin: its involvement in neurotransmitter metabolite clearance from the brain. Journal of Neurochemistry, 2002, 83, 57-66.	3.9	196
14	In vivo and in vitro blood-brain barrier transport of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors. Pharmaceutical Research, 1994, 11, 305-311.	3.5	190
15	Quantitative Targeted Absolute Proteomic Analysis of Transporters, Receptors and Junction Proteins for Validation of Human Cerebral Microvascular Endothelial Cell Line hCMEC/D3 as a Human Blood–Brain Barrier Model. Molecular Pharmaceutics, 2013, 10, 289-296.	4.6	190
16	A study protocol for quantitative targeted absolute proteomics (QTAP) by LC-MS/MS: application for inter-strain differences in protein expression levels of transporters, receptors, claudin-5, and marker proteins at the blood–brain barrier in ddY, FVB, and C57BL/6J mice. Fluids and Barriers of the CNS, 2013, 10, 21.	5.0	185
17	The Blood–Brain Barrier Creatine Transporter is a Major Pathway for Supplying Creatine to the Brain. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 1327-1335.	4.3	161
18	Involvement of the Pyrilamine Transporter, a Putative Organic Cation Transporter, in Blood-Brain Barrier Transport of Oxycodone. Drug Metabolism and Disposition, 2008, 36, 2005-2013.	3.3	160

#	Article	IF	CITATIONS
19	New approaches to in vitro models of blood–brain barrier drug transport. Drug Discovery Today, 2003, 8, 944-954.	6.4	158
20	Rat Organic Anion Transporter 3 (rOAT3) is Responsible for Brain-to-Blood Efflux of Homovanillic Acid at the Abluminal Membrane of Brain Capillary Endothelial Cells. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 432-440.	4.3	151
21	GAT2/BGT-1 as a System Responsible for the Transport of γ-Aminobutyric Acid at the Mouse Blood–Brain Barrier. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 1232-1239.	4.3	150
22	Simultaneous Absolute Quantification of 11 Cytochrome P450 Isoforms in Human Liver Microsomes by Liquid Chromatography Tandem Mass Spectrometry with In Silico Target Peptide Selection. Journal of Pharmaceutical Sciences, 2011, 100, 341-352.	3.3	150
23	Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCKâ€Mi and CKâ€B suggest a novel neuron–glial relationship for brain energy homeostasis. European Journal of Neuroscience, 2004, 20, 144-160.	2.6	149
24	Restricted transport of cyclosporin A across the blood-brain barrier by a multidrug transporter, P-glycoprotein. Biochemical Pharmacology, 1993, 46, 1096-1099.	4.4	147
25	Conditionally Immortalized Retinal Capillary Endothelial Cell Lines (TR-iBRB) Expressing Differentiated Endothelial Cell Functions Derived from a Transgenic Rat. Experimental Eye Research, 2001, 72, 163-172.	2.6	147
26	Physiologically Based Pharmacokinetic Model for β-Lactam Antibiotics I: Tissue Distribution and Elimanation Rates. Journal of Pharmaceutical Sciences, 1983, 72, 1239-1252.	3.3	145
27	Exogenous expression of claudin-5 induces barrier properties in cultured rat brain capillary endothelial cells. Journal of Cellular Physiology, 2007, 210, 81-86.	4.1	144
28	A functional in vitro model of rat blood–brain barrier for molecular analysis of efflux transporters. Brain Research, 2007, 1150, 1-13.	2.2	140
29	Transcellular transport of benzoic acid across Caco-2 cells by a pH-dependent and carrier-mediated transport mechanism. Pharmaceutical Research, 1994, 11, 30-37.	3.5	139
30	Efficient transfer of receptor-associated protein (RAP) across the blood-brain barrier. Journal of Cell Science, 2004, 117, 5071-5078.	2.0	135
31	Characterization of the organic cation transporter SLC22A16: A doxorubicin importer. Biochemical and Biophysical Research Communications, 2005, 333, 754-762.	2.1	134
32	Functional expression of rat ABCG2 on the luminal side of brain capillaries and its enhancement by astrocyte-derived soluble factor(s). Journal of Neurochemistry, 2004, 90, 526-536.	3.9	131
33	Major role of organic anion transporter 3 in the transport of indoxyl sulfate in the kidney. Kidney International, 2002, 61, 1760-1768.	5.2	128
34	Blood-Brain Barrier Is Involved in the Efflux Transport of a Neuroactive Steroid, Dehydroepiandrosterone Sulfate, via Organic Anion Transporting Polypeptide 2. Journal of Neurochemistry, 2002, 75, 1907-1916.	3.9	127
35	Quantitative Targeted Absolute Proteomics-Based Adme Research as A New Path to Drug Discovery and Development: Methodology, Advantages, Strategy, and Prospects. Journal of Pharmaceutical Sciences, 2011, 100, 3547-3559.	3.3	125
36	SLCO4C1 Transporter Eliminates Uremic Toxins and Attenuates Hypertension and Renal Inflammation. Journal of the American Society of Nephrology: JASN, 2009, 20, 2546-2555.	6.1	124

#	Article	IF	CITATIONS
37	Distinct spatio-temporal expression of ABCA and ABCG transporters in the developing and adult mouse brain. Journal of Neurochemistry, 2005, 95, 294-304.	3.9	121
38	Absolute Quantification and Differential Expression of Drug Transporters, Cytochrome P450 Enzymes, and UDP-Glucuronosyltransferases in Cultured Primary Human Hepatocytes. Drug Metabolism and Disposition, 2012, 40, 93-103.	3.3	121
39	Inhibition of TXNIP expression in vivo blocks early pathologies of diabetic retinopathy. Cell Death and Disease, 2010, 1, e65-e65.	6.3	117
40	Blood-Brain Barrier (BBB) Pharmacoproteomics: Reconstruction of In Vivo Brain Distribution of 11 P-Clycoprotein Substrates Based on the BBB Transporter Protein Concentration, In Vitro Intrinsic Transport Activity, and Unbound Fraction in Plasma and Brain in Mice. Journal of Pharmacology and Experimental Therapeutics, 2011, 339, 579-588.	2.5	116
41	mRNA expression levels of tight junction protein genes in mouse brain capillary endothelial cells highly purified by magnetic cell sorting. Journal of Neurochemistry, 2008, 104, 147-154.	3.9	115
42	Functional characterization of the brain-to-blood efflux clearance of human amyloid-β peptide (1–40) across the rat blood–brain barrier. Neuroscience Research, 2006, 56, 246-252.	1.9	113
43	Quantitative Proteomics of Transporter Expression in Brain Capillary Endothelial Cells Isolated from P-Glycoprotein (P-gp), Breast Cancer Resistance Protein (Bcrp), and P-gp/Bcrp Knockout Mice. Drug Metabolism and Disposition, 2012, 40, 1164-1169.	3.3	112
44	Establishment of a new conditionally immortalized human brain microvascular endothelial cell line retaining an in vivo blood–brain barrier function. Journal of Cellular Physiology, 2010, 225, 519-528.	4.1	109
45	Largeâ€scale multiplex absolute protein quantification of drugâ€metabolizing enzymes and transporters in human intestine, liver, and kidney microsomes by SWATHâ€MS: Comparison with MRM/SRM and HRâ€MRM/PRM. Proteomics, 2016, 16, 2106-2117.	2.2	109
46	Efficient Delivery of Circulating Poliovirus to the Central Nervous System Independently of Poliovirus Receptor. Virology, 1997, 229, 421-428.	2.4	106
47	Regulation of taurine transport at the blood-brain barrier by tumor necrosis factor-α, taurine and hypertonicity. Journal of Neurochemistry, 2002, 83, 1188-1195.	3.9	105
48	Insulin Facilitates the Hepatic Clearance of Plasma Amyloid β-Peptide (1–40) by Intracellular Translocation of Low-Density Lipoprotein Receptor-Related Protein 1 (LRP-1) to the Plasma Membrane in Hepatocytes. Molecular Pharmacology, 2007, 72, 850-855.	2.3	105
49	Aβ Immunotherapy: Intracerebral Sequestration of Aβ by an Anti-Aβ Monoclonal Antibody 266 with High Affinity to Soluble Aβ. Journal of Neuroscience, 2009, 29, 11393-11398.	3.6	103
50	mRNA Expression and Transport Characterization of Conditionally Immortalized Rat Brain Capillary Endothelial Cell Lines; a New <i>in vitro</i> BBB Model for Drug Targeting. Journal of Drug Targeting, 2000, 8, 357-370.	4.4	102
51	Peripheral nerve pericytes modify the blood–nerve barrier function and tight junctional molecules through the secretion of various soluble factors. Journal of Cellular Physiology, 2011, 226, 255-266.	4.1	101
52	Major Involvement of Low-Density Lipoprotein Receptor-Related Protein 1 in the Clearance of Plasma Free Amyloid β-Peptide by the Liver. Pharmaceutical Research, 2006, 23, 1407-1416.	3.5	100
53	MCT1-mediated transport of L-lactic acid at the inner blood-retinal barrier: a possible route for delivery of monocarboxylic acid drugs to the retina. Pharmaceutical Research, 2001, 18, 1669-1676.	3.5	99
54	Peripheral Nerve pericytes originating from the blood–nerve barrier expresses tight junctional molecules and transporters as barrierâ€forming cells. Journal of Cellular Physiology, 2008, 217, 388-399.	4.1	99

#	Article	IF	CITATIONS
55	The Low Density Lipoprotein Receptor-related Protein 1 Mediates Uptake of Amyloid β Peptides in an in Vitro Model of the Blood-Brain Barrier Cells. Journal of Biological Chemistry, 2008, 283, 34554-34562.	3.4	99
56	Critical role of TXNIP in oxidative stress, DNA damage and retinal pericyte apoptosis under high glucose: Implications for diabetic retinopathy. Experimental Cell Research, 2013, 319, 1001-1012.	2.6	97
57	The blood–brain barrier efflux transporters as a detoxifying system for the brain. Advanced Drug Delivery Reviews, 1999, 36, 195-209.	13.7	93
58	Depletion of Vitamin E Increases Amyloid β Accumulation by Decreasing Its Clearances from Brain and Blood in a Mouse Model of Alzheimer Disease. Journal of Biological Chemistry, 2009, 284, 33400-33408.	3.4	91
59	Brain Insulin Impairs Amyloid-Â(1-40) Clearance from the Brain. Journal of Neuroscience, 2004, 24, 9632-9637.	3.6	90
60	Identification of blood biomarkers in glioblastoma by SWATH mass spectrometry and quantitative targeted absolute proteomics. PLoS ONE, 2018, 13, e0193799.	2.5	87
61	L-Type Amino Acid Transporter 1–Mediatedl-Leucine Transport at the Inner Blood–Retinal Barrier. , 2005, 46, 2522.		86
62	Quantitative targeted absolute proteomics of rat blood–cerebrospinal fluid barrier transporters: comparison with a human specimen. Journal of Neurochemistry, 2015, 134, 1104-1115.	3.9	86
63	Conditionally Immortalized Cell Lines as a New In Vitro Model for the Study of Barrier Functions. Biological and Pharmaceutical Bulletin, 2001, 24, 111-118.	1.4	85
64	Expression and regulation of L-cystine transporter, system xc?, in the newly developed rat retinal M�ller cell line (TR-MUL). Glia, 2003, 43, 208-217.	4.9	85
65	1α,25-Dihydroxyvitamin D3 enhances cerebral clearance of human amyloid-β peptide(1-40) from mouse brain across the blood-brain barrier. Fluids and Barriers of the CNS, 2011, 8, 20.	5.0	85
66	Vitamin C Transport in Oxidized Form across the Rat Blood–Retinal Barrier. , 2004, 45, 1232.		84
67	Blood-Brain Barrier Produces Significant Efflux of L-Aspartic Acid but Not D-Aspartic Acid. Journal of Neurochemistry, 2001, 73, 1206-1211.	3.9	83
68	Na+- and Clâ^'-Dependent transport of taurine at the blood-brain barrier. Biochemical Pharmacology, 1995, 50, 1783-1793.	4.4	81
69	Efflux of a suppressive neurotransmitter, GABA, across the blood-brain barrier. Journal of Neurochemistry, 2008, 79, 110-118.	3.9	81
70	Major involvement of Na ⁺ â€dependent multivitamin transporter (SLC5A6/SMVT) in uptake of biotin and pantothenic acid by human brain capillary endothelial cells. Journal of Neurochemistry, 2015, 134, 97-112.	3.9	81
71	Organic anion transporter 3 is involved in the brain-to-blood efflux transport of thiopurine nucleobase analogs. Journal of Neurochemistry, 2004, 90, 931-941.	3.9	80
72	Diphenhydramine Active Uptake at the Blood–Brain Barrier and Its Interaction with Oxycodone in vitro and in Vivo. Journal of Pharmaceutical Sciences, 2011, 100, 3912-3923.	3.3	79

#	Article	IF	CITATIONS
73	Role of efflux transport across the blood-brain barrier and blood-cerebrospinal fluid barrier on the disposition of xenobiotics in the central nervous system. Advanced Drug Delivery Reviews, 1997, 25, 257-285.	13.7	77
74	Localization of norepinephrine and serotonin transporter in mouse brain capillary endothelial cells. Neuroscience Research, 2002, 44, 173-180.	1.9	76
75	Identification of IGFBP2 and IGFBP3 As Compensatory Biomarkers for CA19-9 in Early-Stage Pancreatic Cancer Using a Combination of Antibody-Based and LC-MS/MS-Based Proteomics. PLoS ONE, 2016, 11, e0161009.	2.5	76
76	Cerebral clearance of human amyloidâ€Î² peptide (1–40) across the blood–brain barrier is reduced by selfâ€aggregation and formation of lowâ€density lipoprotein receptorâ€related proteinâ€1 ligand complexes. Journal of Neurochemistry, 2007, 103, 2482-2490.	3.9	75
77	Pharmacokinetic Study on the Mechanism of Tissue Distribution of Doxorubicin: Interorgan and Interspecies Variation of Tissue-To-Plasma Partition Coefficients in Rats, Rabbits, and Guinea Pigs. Journal of Pharmaceutical Sciences, 1984, 73, 1359-1363.	3.3	74
78	Mouse Reduced in Osteosclerosis Transporter Functions as an Organic Anion Transporter 3 and Is Localized at Abluminal Membrane of Blood-Brain Barrier. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 1273-1281.	2.5	74
79	Induction of Endoplasmic Reticulum Stress in Retinal Pericytes by Glucose Deprivation. Current Eye Research, 2006, 31, 947-953.	1.5	74
80	Brain-to-blood transporters for endogenous substrates and xenobiotics at the blood-brain barrier: An overview of biology and methodology. NeuroRx, 2005, 2, 63-72.	6.0	72
81	Quantitative expression of human drug transporter proteins in lung tissues: Analysis of regional, gender, and interindividual differences by liquid chromatography–tandem mass spectrometry. Journal of Pharmaceutical Sciences, 2013, 102, 3395-3406.	3.3	72
82	ATA2 Is Predominantly Expressed as System A at the Blood-Brain Barrier and Acts as Brain-to-Blood Efflux Transport forl-Proline. Molecular Pharmacology, 2002, 61, 1289-1296.	2.3	71
83	ATP-Binding Cassette Transporter G2 Mediates the Efflux of Phototoxins on the Luminal Membrane of Retinal Capillary Endothelial Cells. Pharmaceutical Research, 2006, 23, 1235-1242.	3.5	69
84	Quantitative Determination of Luminal and Abluminal Membrane Distributions of Transporters in Porcine Brain Capillaries by Plasma Membrane Fractionation and Quantitative Targeted Proteomics. Journal of Pharmaceutical Sciences, 2015, 104, 3060-3068.	3.3	69
85	Quantitative Atlas of Cytochrome P450, UDP-Glucuronosyltransferase, and Transporter Proteins in Jejunum of Morbidly Obese Subjects. Molecular Pharmaceutics, 2016, 13, 2631-2640.	4.6	69
86	Trans-chromosomic mice containing a human CYP3A cluster for prediction of xenobiotic metabolism in humans. Human Molecular Genetics, 2013, 22, 578-592.	2.9	68
87	In vivo transport of a dynorphin-like analgesic peptide, E-2078, through the blood-brain barrier: an application of brain microdialysis. Pharmaceutical Research, 1991, 08, 815-820.	3.5	67
88	Investigation of the Role of Breast Cancer Resistance Protein (Bcrp/ <i>Abcg2</i>) on Pharmacokinetics and Central Nervous System Penetration of Abacavir and Zidovudine in the Mouse. Drug Metabolism and Disposition, 2008, 36, 1476-1484.	3.3	67
89	Involvement of Claudin-11 in Disruption of Blood-Brain, -Spinal Cord, and -Arachnoid Barriers in Multiple Sclerosis. Molecular Neurobiology, 2019, 56, 2039-2056.	4.0	66
90	Function and regulation of taurine transport at the inner blood–retinal barrier. Microvascular Research, 2007, 73, 100-106.	2.5	65

#	Article	IF	CITATIONS
91	Roles of Inner Blood-Retinal Barrier Organic Anion Transporter 3 in the Vitreous/Retina-to-Blood Efflux Transport of <i>p</i> -Aminohippuric Acid, Benzylpenicillin, and 6-Mercaptopurine. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 87-93.	2.5	65
92	Rat Organic Anion Transporter 3 (rOAT3) Is Responsible for Brain-to-Blood Efflux of Homovanillic Acid at the Abluminal Membrane of Brain Capillary Endothelial Cells. Journal of Cerebral Blood Flow and Metabolism, 2003, , 432-440.	4.3	64
93	Conditionally immortalized brain capillary endothelial cell lines established from a transgenic mouse harboring temperature-sensitive simian virus 40 large T-antigen gene. AAPS PharmSci, 2000, 2, 69-79.	1.3	63
94	In Vitro Study of the Functional Expression of Organic Anion Transporting Polypeptide 3 at Rat Choroid Plexus Epithelial Cells and Its Involvement in the Cerebrospinal Fluid-to-Blood Transport of Estrone-3-Sulfate. Molecular Pharmacology, 2003, 63, 532-537.	2.3	63
95	Internalization of basic fibroblast growth factor at the mouse blood-brain barrier involves perlecan, a heparan sulfate proteoglycan. Journal of Neurochemistry, 2002, 83, 381-389.	3.9	62
96	Multichannel Liquid Chromatography–Tandem Mass Spectrometry Cocktail Method for Comprehensive Substrate Characterization of Multidrug Resistance-Associated Protein 4 Transporter. Pharmaceutical Research, 2007, 24, 2281-2296.	3.5	62
97	Functional expression of a proton-coupled organic cation (H+/OC) antiporter in human brain capillary endothelial cell line hCMEC/D3, a human blood–brain barrier model. Fluids and Barriers of the CNS, 2013, 10, 8.	5.0	62
98	Characterization of the amino acid transport of new immortalized choroid plexus epithelial cell lines: a novel in vitro system for investigating transport functions at the blood-cerebrospinal fluid barrier. Pharmaceutical Research, 2001, 18, 16-22.	3.5	61
99	Carrier-mediated uptake of nicotinic acid by rat intestinal brush-border membrane vesicles and relation to monocarboxylic acid transport Journal of Pharmacobio-dynamics, 1990, 13, 301-309.	0.5	60
100	Bloodâ€ŧoâ€ŧetina transport of creatine via creatine transporter (CRT) at the rat inner blood–retinal barrier. Journal of Neurochemistry, 2004, 89, 1454-1461.	3.9	60
101	The Blood???Brain Barrier Creatine Transporter Is a Major Pathway for Supplying Creatine to the Brain. Journal of Cerebral Blood Flow and Metabolism, 2002, , 1327-1335.	4.3	60
102	Human Platelets Express Organic Anion-Transporting Peptide 2B1, an Uptake Transporter for Atorvastatin. Drug Metabolism and Disposition, 2009, 37, 1129-1137.	3.3	59
103	24S-hydroxycholesterol induces cholesterol release from choroid plexus epithelial cells in an apical- and apoE isoform-dependent manner concomitantly with the induction of ABCA1 and ABCG1 expression. Journal of Neurochemistry, 2007, 100, 968-978.	3.9	58
104	The l-isomer-selective transport of aspartic acid is mediated by ASCT2 at the blood-brain barrier. Journal of Neurochemistry, 2004, 87, 891-901.	3.9	57
105	An Application of Microdialysis to Drug Tissue Distribution Study: In Vivo Evidence for Free-Ligand Hypothesis and Tissue Binding of .BETALactam Antibiotics in Interstitial Fluids Journal of Pharmacobio-dynamics, 1992, 15, 79-89.	0.5	55
106	Enhancement of I-Cystine Transport Activity and Its Relation to xCT Gene Induction at the Blood-Brain Barrier by Diethyl Maleate Treatment. Journal of Pharmacology and Experimental Therapeutics, 2002, 302, 225-231.	2.5	55
107	Coordinating Etk/Bmx activation and VEGF upregulation to promote cell survival and proliferation. Oncogene, 2002, 21, 8817-8829.	5.9	55
108	Reliability and Robustness of Simultaneous Absolute Quantification of Drug Transporters, Cytochrome P450 Enzymes, and Udp-Glucuronosyltransferases in Human Liver Tissue by Multiplexed MRM/Selected Reaction Monitoring Mode Tandem Mass Spectrometry with Nano-Liquid Chromatography. Journal of Pharmaceutical Sciences, 2011, 100, 4037-4043.	3.3	55

#	Article	IF	CITATIONS
109	Localization of organic anion transporting polypeptide 3 (oatp3) in mouse brain parenchymal and capillary endothelial cells. Journal of Neurochemistry, 2004, 90, 743-749.	3.9	54
110	Hyperammonemia induces transport of taurine and creatine and suppresses claudin-12 gene expression in brain capillary endothelial cells in vitro. Neurochemistry International, 2007, 50, 95-101.	3.8	53
111	Blood-Brain Barrier Pharmacoproteomics-Based Reconstruction of the In Vivo Brain Distribution of P-Glycoprotein Substrates in Cynomolgus Monkeys. Journal of Pharmacology and Experimental Therapeutics, 2014, 350, 578-588.	2.5	52
112	Determination of in vivo steady-state unbound drug concentration in the brain interstitial fluid by microdialysis. International Journal of Pharmaceutics, 1992, 81, 143-152.	5.2	51
113	Involvement of organic anion transporters in the efflux of uremic toxins across the blood–brain barrier. Journal of Neurochemistry, 2006, 96, 1051-1059.	3.9	51
114	Muscle Microdialysis as a Model Study to Relate the Drug Concentration in Tissue Interstitial Fluid and Dialysate Journal of Pharmacobio-dynamics, 1991, 14, 483-492.	0.5	50
115	Differential Contributions of rOat1 (Slc22a6) and rOat3 (Slc22a8) to the in Vivo Renal Uptake of Uremic Toxins in Rats. Pharmaceutical Research, 2005, 22, 619-627.	3.5	50
116	ATP-binding cassette transporter A1 (ABCA1) deficiency does not attenuate the brain-to-blood efflux transport of human amyloid-β peptide (1–40) at the blood–brain barrier. Neurochemistry International, 2008, 52, 956-961.	3.8	50
117	Blood-to-brain influx transport of nicotine at the rat blood?brain barrier: Involvement of a pyrilamine-sensitive organic cation transport process. Neurochemistry International, 2013, 62, 173-181.	3.8	50
118	Cluster of Differentiation 46 Is the Major Receptor in Human Blood–Brain Barrier Endothelial Cells for Uptake of Exosomes Derived from Brain-Metastatic Melanoma Cells (SK-Mel-28). Molecular Pharmaceutics, 2019, 16, 292-304.	4.6	50
119	Acidic drug transport in vivo through the blood-brain barrier. A role of the transport carrier for monocarboxylic acids Journal of Pharmacobio-dynamics, 1990, 13, 158-163.	0.5	49
120	Transport Mechanism of an H1-Antagonist at the Blood-Brain Barrier: Transport Mechanism of Mepyramine Using the Carotid Injection Technique Biological and Pharmaceutical Bulletin, 1994, 17, 676-679.	1.4	49
121	Expression and possible role of creatine transporter in the brain and at the bloodâ€cerebrospinal fluid barrier as a transporting protein of guanidinoacetate, an endogenous convulsant. Journal of Neurochemistry, 2008, 107, 768-778.	3.9	49
122	β-Lactam antibiotics and transport via the dipeptide carrier system across the intestinal brush-border membrane. Biochemical Pharmacology, 1987, 36, 565-567.	4.4	48
123	Proteome analysis of rat serum proteins adsorbed onto synthetic octacalcium phosphate crystals. Analytical Biochemistry, 2011, 418, 276-285.	2.4	47
124	In vivo and in vitro evidence for a common carrier mediated transport of choline and basic drugs through the blood-brain barrier Journal of Pharmacobio-dynamics, 1990, 13, 353-360.	0.5	46
125	Experimental evidence of characteristic tissue distribution of adriamycin. Tissue DNA concentration as a determinant. Journal of Pharmacy and Pharmacology, 2011, 34, 597-600.	2.4	46
126	Amyloidâ€Î² peptide(1â€40) elimination from cerebrospinal fluid involves lowâ€density lipoprotein receptorâ€related protein 1 at the bloodâ€cerebrospinal fluid barrier. Journal of Neurochemistry, 2011, 118, 407-415.	3.9	46

#	Article	IF	CITATIONS
127	Correlation of Induction of ATP Binding Cassette Transporter A5 (ABCA5) and ABCB1 mRNAs with Differentiation State of Human Colon Tumor. Biological and Pharmaceutical Bulletin, 2007, 30, 1144-1146.	1.4	45
128	BMP signaling through BMPRIA in astrocytes is essential for proper cerebral angiogenesis and formation of the blood–brain-barrier. Molecular and Cellular Neurosciences, 2008, 38, 417-430.	2.2	45
129	Intestinal brush-border transport of the oral cephalosporin antibiotic, cefdinir, mediated by dipeptide and monocarboxylic acid transport systems in rabbits. Journal of Pharmacy and Pharmacology, 2011, 45, 996-998.	2.4	45
130	LC–MS/MS Based Quantitation of ABC and SLC Transporter Proteins in Plasma Membranes of Cultured Primary Human Retinal Pigment Epithelium Cells and Immortalized ARPE19 Cell Line. Molecular Pharmaceutics, 2017, 14, 605-613.	4.6	45
131	The bloodâ€brain barrier fatty acid transport protein 1 (<scp>FATP</scp> 1/ <scp>SLC</scp> 27A1) supplies docosahexaenoic acid to the brain, and insulin facilitates transport. Journal of Neurochemistry, 2017, 141, 400-412.	3.9	45
132	Endothelial Cells Constituting Blood-nerve Barrier Have Highly Specialized Characteristics as Barrier-forming Cells. Cell Structure and Function, 2007, 32, 139-147.	1.1	44
133	The blood–brain barrier transport and cerebral distribution of guanidinoacetate in rats: involvement of creatine and taurine transporters. Journal of Neurochemistry, 2009, 111, 499-509.	3.9	44
134	Quantification of Transporter and Receptor Proteins in Dog Brain Capillaries and Choroid Plexus: Relevance for the Distribution in Brain and CSF of Selected BCRP and P-gp Substrates. Molecular Pharmaceutics, 2017, 14, 3436-3447.	4.6	44
135	pH-Dependent Intestinal Transport of Monocarboxylic Acids: Carrier-Mediated and H+-Cotransport Mechanism Versus pH-Partition Hypothesis. Journal of Pharmaceutical Sciences, 1990, 79, 1123-1124.	3.3	43
136	Evidence for creatine biosynthesis in Müller glia. Glia, 2005, 52, 47-52.	4.9	43
137	Expression of nuclear receptor mRNA and liver X receptor-mediated regulation of ABC transporter A1 at rat blood–brain barrier. Neurochemistry International, 2008, 52, 669-674.	3.8	43
138	Comparison of Absolute Protein Abundances of Transporters and Receptors among Blood–Brain Barriers at Different Cerebral Regions and the Blood–Spinal Cord Barrier in Humans and Rats. Molecular Pharmaceutics, 2020, 17, 2006-2020.	4.6	43
139	Receptor-recycling model of clearance and distribution of insulin in the perfused mouse liver. Diabetologia, 1991, 34, 613-621.	6.3	42
140	Carrier-mediated transport of H1-antagonist at the blood-brain barrier: mepyramine uptake into bovine brain capillary endothelial cells in primary monolayer cultures. Pharmaceutical Research, 1994, 11, 975-978.	3.5	42
141	Carrier-mediated transport of H1-antagonist at the blood-brain barrier: a common transport system of H1-antagonists and lipophilic basic drugs. Pharmaceutical Research, 1994, 11, 1516-1518.	3.5	42
142	Recent advances in the brain-to-blood efflux transport across the blood–brain barrier. International Journal of Pharmaceutics, 2002, 248, 15-29.	5.2	42
143	Plateletâ€derived growth factorâ€BB (PDGFâ€BB) induces differentiation of bone marrow endothelial progenitor cellâ€derived cell line TRâ€BME2 into mural cells, and changes the phenotype. Journal of Cellular Physiology, 2005, 204, 948-955.	4.1	42
144	Polarized glucose transporters and mRNA expression properties in newly developed rat syncytiotrophoblast cell lines, TR-TBTs. Journal of Cellular Physiology, 2002, 193, 208-218.	4.1	41

#	Article	IF	CITATIONS
145	Functional characterization of Rat Plasma Membrane Monoamine Transporter in the Blood–Brain and Blood–Cerebrospinal Fluid Barriers. Journal of Pharmaceutical Sciences, 2011, 100, 3924-3938.	3.3	41
146	Downregulation of GNA13-ERK network in prefrontal cortex of schizophrenia brain identified by combined focused and targeted quantitative proteomics. Journal of Proteomics, 2017, 158, 31-42.	2.4	40
147	Absorptive-mediated endocytosis of an adrenocorticotropic hormone (ACTH) analogue, ebiratide, into the blood-brain barrier: studies with monolayers of primary cultured bovine brain capillary endothelial cells. Pharmaceutical Research, 1992, 09, 529-534.	3.5	39
148	Establishment of Conditionally Immortalized Rat Retinal Pericyte Cell Lines (TR-rPCT) and Their Application in a Co-culture System Using Retinal Capillary Endothelial Cell Line (TR-iBRB2). Cell Structure and Function, 2003, 28, 145-153.	1.1	39
149	Lack of brainâ€toâ€blood efflux transport activity of lowâ€density lipoprotein receptorâ€related proteinâ€1 (LRPâ€1) for amyloidâ€Î² peptide(1–40) in mouse: involvement of an LRPâ€1â€independent pathway. Journal or Neurochemistry, 2010, 113, 1356-1363.	f3.9	39
150	Contribution of Pannexin 1 and Connexin 43 Hemichannels to Extracellular Calcium–Dependent Transport Dynamics in Human Blood-Brain Barrier Endothelial Cells. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 192-200.	2.5	39
151	Drug Transporter Protein Quantification of Immortalized Human Lung Cell Lines Derived from Tracheobronchial Epithelial Cells (Calu-3 and BEAS2-B), Bronchiolar–Alveolar Cells (NCI-H292 and) Tj ETQq1 1 0. Iournal of Pharmaceutical Sciences, 2015, 104, 3029-3038.	784314 r 3.3	g&J /Overloc
152	Induction of xCT gene expression and L-cystine transport activity by diethyl maleate at the inner blood-retinal barrier. Investigative Ophthalmology and Visual Science, 2002, 43, 774-9.	3.3	39
153	Dominant expression of androgen receptors and their functional regulation of organic anion transporter 3 in rat brain capillary endothelial cells; Comparison of gene expression between the blood-brain and -retinal barriers. Journal of Cellular Physiology, 2005, 204, 896-900.	4.1	38
154	Quantitative targeted proteomics for understanding the blood–brain barrier: towards pharmacoproteomics. Expert Review of Proteomics, 2014, 11, 303-313.	3.0	38
155	Quantitative Targeted Proteomics of Pancreatic Cancer: Deoxycytidine Kinase Protein Level Correlates to Progression-Free Survival of Patients Receiving Gemcitabine Treatment. Molecular Pharmaceutics, 2015, 12, 3282-3291.	4.6	38
156	Quantitative targeted absolute proteomics for 28 human transporters in plasma membrane of Caco-2 cell monolayer cultured for 2, 3, and 4Âweeks. Drug Metabolism and Pharmacokinetics, 2015, 30, 205-208.	2.2	38
157	Brainâ€ŧoâ€blood elimination of 24Sâ€hydroxycholesterol from rat brain is mediated by organic anion transporting polypeptide 2 (oatp2) at the blood–brain barrier. Journal of Neurochemistry, 2007, 103, 1430-1438.	3.9	37
158	Saturable uptake of cefixime, a new oral cephalosporin without an α-amino group, by the rat intestine. Journal of Pharmacy and Pharmacology, 2011, 39, 272-277.	2.4	37
159	Validation of uPA/SCID Mouse with Humanized Liver as a Human Liver Model: Protein Quantification of Transporters, Cytochromes P450, and UDP-Glucuronosyltransferases by LC-MS/MS. Drug Metabolism and Disposition, 2014, 42, 1039-1043.	3.3	37
160	Brain-to-blood efflux transport of estrone-3-sulfate at the blood-brain barrier in rats. Life Sciences, 2000, 67, 2699-2711.	4.3	36
161	Abundant Expression of OCT2, MATE1, OAT1, OAT3, PEPT2, BCRP, MDR1, and xCT Transporters in Blood-Arachnoid Barrier of Pig and Polarized Localizations at CSF- and Blood-Facing Plasma Membranes. Drug Metabolism and Disposition, 2020, 48, 135-145.	3.3	36
162	Differential Binding of Testosterone and Estradiol to Isoforms of Sex Hormone-Binding Globulin: Selective Alteration of Estradiol Binding in Cirrhosis*. Journal of Clinical Endocrinology and Metabolism, 1988, 67, 639-643.	3.6	35

#	Article	IF	CITATIONS
163	Newly developed rat brain pericyte cell line, TR-PCT1, responds to transforming growth factor-β1 and β-glycerophosphate. European Journal of Cell Biology, 2002, 81, 145-152.	3.6	35
164	Blood-brain barrier transport of a novel Âμ1-specific opioid peptide, H-Tyr-d-Arg-Phe-β-Ala-OH (TAPA). Journal of Neurochemistry, 2003, 84, 1154-1161.	3.9	35
165	A Novel Relationship Between Creatine Transport at the Blood-Brain and Blood-Retinal Barriers, Creatine Biosynthesis, And its Use for Brain and Retinal Energy Homeostasis. , 2007, 46, 83-98.		35
166	mRNA Expression of the ATP-Binding Cassette Transporter Subfamily A (ABCA) in Rat and Human Brain Capillary Endothelial Cells. Biological and Pharmaceutical Bulletin, 2004, 27, 1437-1440.	1.4	34
167	Establishment and Characterization of Human Peripheral Nerve Microvascular Endothelial Cell Lines: A New <i>in vitro</i> Blood-Nerve Barrier (BNB) Model. Cell Structure and Function, 2012, 37, 89-100.	1.1	34
168	Beneficial Effects of Estrogen in a Mouse Model of Cerebrovascular Insufficiency. PLoS ONE, 2009, 4, e5159.	2.5	34
169	Effect of receptor up-regulation on insulin pharmacokinetics in streptozotocin-treated diabetic rats. Pharmaceutical Research, 1991, 08, 563-569.	3.5	33
170	Activation of Carrier-Mediated Transport of l-Cystine at the Blood–Brain and Blood–Retinal Barriers in Vivo. Microvascular Research, 2001, 62, 136-142.	2.5	33
171	The bloodâ€cerebrospinal fluid barrier is a major pathway of cerebral creatinine clearance: involvement of transporterâ€mediated process. Journal of Neurochemistry, 2008, 107, 432-442.	3.9	33
172	Involvement of Multidrug Resistance-Associated Protein 4 in Efflux Transport of Prostaglandin E ₂ across Mouse Blood-Brain Barrier and Its Inhibition by Intravenous Administration of Cephalosporins. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 912-919.	2.5	33
173	Attenuation of prostaglandin E2 elimination across the mouse blood-brain barrier in lipopolysaccharide-induced inflammation and additive inhibitory effect of cefmetazole. Fluids and Barriers of the CNS, 2011, 8, 24.	5.0	33
174	Recombinant arginine deiminase as a differential modulator of inducible (iNOS) and endothelial (eNOS) nitric oxide synthetase activity in cultured endothelial cells. Biochemical Pharmacology, 2003, 66, 1945-1952.	4.4	32
175	In vivo delivery of small interfering RNA targeting brain capillary endothelial cells. Biochemical and Biophysical Research Communications, 2006, 340, 263-267.	2.1	32
176	Establishing a Method to Isolate Rat Brain Capillary Endothelial Cells by Magnetic Cell Sorting and Dominant mRNA Expression of Multidrug Resistance-associated Protein 1 and 4 in Highly Purified Rat Brain Capillary Endothelial Cells. Pharmaceutical Research, 2007, 24, 688-694.	3.5	32
177	Expression of ABC-type transport proteins in human platelets. Pharmacogenetics and Genomics, 2010, 20, 396-400.	1.5	32
178	In-vivo Blood-brain Barrier Transport of a Novel Adrenocorticotropic Hormone Analogue, Ebiratide, Demonstrated by Brain Microdialysis and Capillary Depletion Methods. Journal of Pharmacy and Pharmacology, 2011, 44, 583-588.	2.4	32
179	High Expression of UGT1A1/1A6 in Monkey Small Intestine: Comparison of Protein Expression Levels of Cytochromes P450, UDP-Glucuronosyltransferases, and Transporters in Small Intestine of Cynomolgus Monkey and Human. Molecular Pharmaceutics, 2018, 15, 127-140.	4.6	32
180	Nuclear binding as a determinant of tissue distribution of adriamycin, daunomycin, adriamycinol, daunorubicinol and actinomycin D Journal of Pharmacobio-dynamics, 1984, 7, 269-277.	0.5	31

#	Article	IF	CITATIONS
181	From somatostatin to Sandostatin®: Pharmacodynamics and pharmacokinetics. Metabolism: Clinical and Experimental, 1992, 41, 7-10.	3.4	31
182	Sodium and Chloride Ionâ€Dependent Transport of βâ€Alanine Across the Bloodâ€Brain Barrier. Journal of Neurochemistry, 1996, 67, 330-335.	3.9	31
183	Quantitative Targeted Absolute Proteomics-Based Large-Scale Quantification of Proline-Hydroxylated α-Fibrinogen in Plasma for Pancreatic Cancer Diagnosis. Journal of Proteome Research, 2013, 12, 753-762.	3.7	31
184	Oxidative stress-induced activation of Abl and Src kinases rapidly induces P-glycoprotein internalization via phosphorylation of caveolin-1 on tyrosine-14, decreasing cortisol efflux at the blood–brain barrier. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 420-436.	4.3	31
185	Mechanisms of Intestinal Absorption of the Antibiotic, Fosfomycin, in Brush-Border Membrane Vesicles in Rabbits and Humans Journal of Pharmacobio-dynamics, 1992, 15, 481-489.	0.5	30
186	Effect of extracellular water volume on the distribution kinetics of .BETAlactam antibiotics as a function of age Journal of Pharmacobio-dynamics, 1985, 8, 167-174.	0.5	29
187	Acidic Amino Acid Transport Characteristics of a Newly Developed Conditionally Immortalized Rat Type 2 Astrocyte Cell Line (TR-AST) Cell Structure and Function, 2001, 26, 197-203.	1.1	29
188	Donepezil, tacrine and α-phenyl-n-tert-butyl nitrone (PBN) inhibit choline transport by conditionally immortalized rat brain capillary endothelial cell lines (TR-BBB). Archives of Pharmacal Research, 2005, 28, 443-450.	6.3	29
189	Altered Expression of Basement Membrane-related Molecules in Rat Brain Pericyte, Endothelial, and Astrocyte Cell Lines after Transforming Growth Factor-β1 Treatment. Drug Metabolism and Pharmacokinetics, 2007, 22, 255-266.	2.2	29
190	Fluids and Barriers of the CNS: a new journal encompassing Cerebrospinal Fluid Research. Fluids and Barriers of the CNS, 2011, 8, 1.	5.0	29
191	Molecular-weight-dependent, Anionic-substrate-preferential Transport of β-Lactam Antibiotics via Multidrug Resistance-associated Protein 4. Drug Metabolism and Pharmacokinetics, 2011, 26, 602-611.	2.2	29
192	Involvement of Insulin-Degrading Enzyme in Insulin- and Atrial Natriuretic Peptide-Sensitive Internalization of Amyloid-l² Peptide in Mouse Brain Capillary Endothelial Cells. Journal of Alzheimer's Disease, 2013, 38, 185-200.	2.6	29
193	Pharmacoproteomics-Based Reconstruction of In Vivo P-Clycoprotein Function at Blood-Brain Barrier and Brain Distribution of Substrate Verapamil in Pentylenetetrazole-Kindled Epilepsy, Spontaneous Epilepsy, and Phenytoin Treatment Models. Drug Metabolism and Disposition, 2014, 42, 1719-1726.	3.3	29
194	Drug Clearance from Cerebrospinal Fluid Mediated by Organic Anion Transporters 1 (Slc22a6) and 3 (Slc22a8) at Arachnoid Membrane of Rats. Molecular Pharmaceutics, 2018, 15, 911-922.	4.6	29
195	Sodium and pH dependent carrier-mediated transport of antibiotic, fosfomycin, in the rat intestinal brush-border membrane Journal of Pharmacobio-dynamics, 1990, 13, 292-300.	0.5	28
196	Participation of Monocarboxylic Anion and Bicarbonate Exchange System for the Transport of Acetic Acid and Monocarboxylic Acid Drugs in the Small Intestinal Brush-Border Membrane Vesicles Journal of Pharmacobio-dynamics, 1991, 14, 501-508.	0.5	28
197	Functional expression of intestinal dipeptide/Ĵ²-lactam antibiotic transporter in Xenopus laevis oocytes. Biochemical Pharmacology, 1994, 48, 881-888.	4.4	28
198	Modulation and Compensation of the mRNA Expression of Energy Related Transporters in the Brain of Glucose Transporter 1-Deficient Mice. Biological and Pharmaceutical Bulletin, 2006, 29, 1587-1591.	1.4	28

#	Article	IF	CITATIONS
199	Targeting choroid plexus epithelia and ventricular ependyma for drug delivery to the central nervous system. BMC Neuroscience, 2011, 12, 4.	1.9	28
200	A new in vitro model for blood?cerebrospinal fluid barrier transport studies: an immortalized choroid plexus epithelial cell line derived from the tsA58 SV40 large T-antigen gene transgenic rat. Advanced Drug Delivery Reviews, 2004, 56, 1875-1885.	13.7	27
201	Retinal-specific ATP-binding cassette transporter (ABCR/ABCA4) is expressed at the choroid plexus in rat brain. Journal of Neurochemistry, 2005, 92, 1277-1280.	3.9	27
202	Reduction of L-Type Amino Acid Transporter 1 mRNA Expression in Brain Capillaries in a Mouse Model of Parkinson's Disease. Biological and Pharmaceutical Bulletin, 2010, 33, 1250-1252.	1.4	27
203	Genomic Knockout of Endogenous Canine P-Glycoprotein in Wild-Type, Human P-Glycoprotein and Human BCRP Transfected MDCKII Cell Lines by Zinc Finger Nucleases. Pharmaceutical Research, 2015, 32, 2060-2071.	3.5	27
204	Evidence for a carrier-mediated transport system in the small intestine available for FK089, a new cephalosporin antibiotic without an amino group Journal of Antibiotics, 1986, 39, 1592-1597.	2.0	26
205	Stereospecificity of Triiodothyronine Transport into Brain, Liver, and Salivary Gland: Role of Carrier- and Plasma Protein-Mediated Transport*. Endocrinology, 1987, 121, 1185-1191.	2.8	26
206	In-vivo and In-vitro Evidence of a Carrier-mediated Efflux Transport System for Oestrone-3-sulphate across the Blood-Cerebrospinal Fluid Barrier. Journal of Pharmacy and Pharmacology, 2010, 52, 281-288.	2.4	26
207	Validation of a P-Glycoprotein (P-gp) Humanized Mouse Model by Integrating Selective Absolute Quantification of Human MDR1, Mouse Mdr1a and Mdr1b Protein Expressions with In Vivo Functional Analysis for Blood-Brain Barrier Transport. PLoS ONE, 2015, 10, e0118638.	2.5	26
208	Inner Blood–Retinal Barrier Dominantly Expresses Breast Cancer Resistance Protein: Comparative Quantitative Targeted Absolute Proteomics Study of CNS Barriers in Pig. Molecular Pharmaceutics, 2017, 14, 3729-3738.	4.6	26
209	Modulation of retinal capillary endothelial cells by Müller glial cell-derived factors. Molecular Vision, 2009, 15, 451-7.	1.1	26
210	Characterization of immortalized choroid plexus epithelial cell lines for studies of transport processes across the blood-cerebrospinal fluid barrier. Cerebrospinal Fluid Research, 2010, 7, 11.	0.5	25
211	GSK-3β/CREB axis mediates IGF-1-induced ECM/adhesion molecule expression, cell cycle progression and monolayer permeability in retinal capillary endothelial cells: Implications for diabetic retinopathy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1080-1088.	3.8	25
212	Dysfunction of choline transport system through blood-brain barrier in stroke-prone spontaneously hypertensive rats Journal of Pharmacobio-dynamics, 1990, 13, 10-19.	0.5	24
213	In Vivo Evidence for Brain-to-Blood Efflux Transport of Valproic Acid across the Blood–Brain Barrier. Microvascular Research, 2002, 63, 233-238.	2.5	24
214	Kinetic evidence for a common transport route of benzylpenicillin and probenecid by freshly prepared hepatocytes in rats. Influence of sodium ion, organic anions, amino acids and peptides on benzylpenicillin uptake Journal of Pharmacobio-dynamics, 1986, 9, 18-28.	0.5	23
215	mRNA Expression and Amino Acid Transport Characteristics of Cultured Human Brain Microvascular Endothelial Cells (hBME). Drug Metabolism and Pharmacokinetics, 2002, 17, 367-373.	2.2	23
216	Rat brain pericyte cell lines expressing ?2-adrenergic receptor, angiotensin II receptor type 1A, klotho, and CXCR4 mRNAs despite having endothelial cell markers. Journal of Cellular Physiology, 2003, 197, 69-76.	4.1	23

#	Article	IF	CITATIONS
217	Attenuation of Phosphorylation by Deoxycytidine Kinase is Key to Acquired Gemcitabine Resistance in a Pancreatic Cancer Cell Line: Targeted Proteomic and Metabolomic Analyses in PK9 Cells. Pharmaceutical Research, 2012, 29, 2006-2016.	3.5	23
218	Identification of Transporters Associated with Etoposide Sensitivity of Stomach Cancer Cell Lines and Methotrexate Sensitivity of Breast Cancer Cell Lines by Quantitative Targeted Absolute Proteomics. Molecular Pharmacology, 2013, 83, 490-500.	2.3	23
219	ATP-Binding Cassette Transporter A Subfamily 8 Is a Sinusoidal Efflux Transporter for Cholesterol and Taurocholate in Mouse and Human Liver. Molecular Pharmaceutics, 2018, 15, 343-355.	4.6	23
220	Altered Expression of Small Intestinal Drug Transporters and Hepatic Metabolic Enzymes in a Mouse Model of Familial Alzheimer's Disease. Molecular Pharmaceutics, 2018, 15, 4073-4083.	4.6	23
221	Effects of Arginine-Vasopressin Fragment 4–9 on Rodent Cholinergic Systems. Pharmacology Biochemistry and Behavior, 1999, 63, 549-553.	2.9	22
222	Establishment and characterization of conditionally immortalized endothelial cell lines from the thoracic duct and inferior vena cava of tsA58/EGFP double-transgenic rats. Cell and Tissue Research, 2006, 326, 749-758.	2.9	22
223	Characterization of the Mechanism of Zidovudine Uptake by Rat Conditionally Immortalized Syncytiotrophoblast Cell Line TR-TBT. Pharmaceutical Research, 2008, 25, 1647-1653.	3.5	22
224	Oral Morphine Pharmacokinetic in Obesity: The Role of P-Glycoprotein, MRP2, MRP3, UGT2B7, and CYP3A4 Jejunal Contents and Obesity-Associated Biomarkers. Molecular Pharmaceutics, 2016, 13, 766-773.	4.6	22
225	Current Progress Toward a Better Understanding of Drug Disposition Within the Lungs: Summary Proceedings of the First Workshop on Drug Transporters in the Lungs. Journal of Pharmaceutical Sciences, 2017, 106, 2234-2244.	3.3	22
226	Liver Zonation Index of Drug Transporter and Metabolizing Enzyme Protein Expressions in Mouse Liver Acinus. Drug Metabolism and Disposition, 2018, 46, 610-618.	3.3	22
227	Drug–drug interaction between oxycodone and adjuvant analgesics in blood–brain barrier transport and antinociceptive effect. Journal of Pharmaceutical Sciences, 2010, 99, 467-474.	3.3	21
228	A carrier-mediated transport system for benzylpenicillin in isolated hepatocytes. Journal of Pharmacy and Pharmacology, 2011, 37, 55-57.	2.4	21
229	ls P-glycoprotein Involved in Amyloid-β Elimination Across the Blood–Brain Barrier in Alzheimer's Disease?. Clinical Pharmacology and Therapeutics, 2010, 88, 443-445.	4.7	20
230	Physiological pharmacokinetics of Mactam antibiotics: penicillin V distribution and elimination after intravenous administration in rats. Journal of Pharmacy and Pharmacology, 2011, 31, 116-119.	2.4	20
231	Establishment and characterization of spinal cord microvascular endothelial cell lines. Clinical and Experimental Neuroimmunology, 2013, 4, 326-338.	1.0	20
232	Actin filamentâ€associated protein 1 (AFAPâ€1) is a key mediator in inflammatory signalingâ€induced rapid attenuation of intrinsic Pâ€gp function in human brain capillary endothelial cells. Journal of Neurochemistry, 2017, 141, 247-262.	3.9	20
233	Developmental changes in transporter and receptor protein expression levels at the rat blood-brain barrier based on quantitative targeted absolute proteomics. Drug Metabolism and Pharmacokinetics, 2020, 35, 117-123.	2.2	20
234	Establishment and validation of highly accurate formalin-fixed paraffin-embedded quantitative proteomics by heat-compatible pressure cycling technology using phase-transfer surfactant and SWATH-MS. Scientific Reports, 2020, 10, 11271.	3.3	20

#	Article	IF	CITATIONS
235	Gelsolin inhibits malignant phenotype of glioblastoma and is regulated by miRâ€654â€5p and miRâ€450bâ€5p. Cancer Science, 2020, 111, 2413-2422.	3.9	20
236	Establishment of bone marrow-derived endothelial cell lines from ts-SV40 T-antigen gene transgenic rats. Pharmaceutical Research, 2001, 18, 9-15.	3.5	19
237	Increased JNK Phosphorylation and Oxidative Stress in Response to Increased Glucose Flux through Increased GLUT1 Expression in Rat Retinal Endothelial Cells. , 2005, 46, 3403.		19
238	The HMG-CoA Reductase Inhibitor Pravastatin Stimulates Insulin Secretion through Organic Anion Transporter Polypeptides. Drug Metabolism and Pharmacokinetics, 2010, 25, 274-282.	2.2	19
239	Quantitative Targeted Absolute Proteomics for 28 Transporters in Brush-Border and Basolateral Membrane Fractions of Rat Kidney. Journal of Pharmaceutical Sciences, 2016, 105, 1011-1016.	3.3	19
240	Pharmacoproteomics of Brain Barrier Transporters and Substrate Design for the Brain Targeted Drug Delivery. Pharmaceutical Research, 2022, 39, 1363-1392.	3.5	19
241	Characterization of the transport properties of a quinolone antibiotic, fleroxacin, in rat choroid plexus. Pharmaceutical Research, 1996, 13, 523-527.	3.5	18
242	Blood-Brain Barrier Permeability of Novel [d-Arg2]Dermorphin (1-4) Analogs: Transport Property Is Related to the Slow Onset of Antinociceptive Activity in the Central Nervous System. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 177-184.	2.5	18
243	In-vitro Evidence for Carrier-mediated Uptake of Acidic Drugs by Isolated Bovine Brain Capillaries. Journal of Pharmacy and Pharmacology, 2011, 43, 172-176.	2.4	18
244	Atrial Natriuretic Peptide is Eliminated from the Brain by Natriuretic Peptide Receptor-C-Mediated Brain-to-Blood Efflux Transport at the Blood—Brain Barrier. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 457-466.	4.3	18
245	Organic Anion-Transporting Polypeptide 1a4 (Oatp1a4/Slco1a4) at the Blood–Arachnoid Barrier is the Major Pathway of Sulforhodamine-101 Clearance from Cerebrospinal Fluid of Rats. Molecular Pharmaceutics, 2019, 16, 2021-2027.	4.6	18
246	Quantitative Protein Expression in the Human Retinal Pigment Epithelium: Comparison Between Apical and Basolateral Plasma Membranes With Emphasis on Transporters. , 2019, 60, 5022.		18
247	Distinct roles of ezrin, radixin and moesin in maintaining the plasma membrane localizations and functions of human blood–brain barrier transporters. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1533-1545.	4.3	18
248	Uptake of drugs and expression of P-glycoprotein in the rat 9L glioma. Experimental Brain Research, 1993, 95, 41-50.	1.5	17
249	Preface: Targeted Drug Delivery to the Brain (Blood-Brain Barrier, Efflux, Endothelium, Biological) Tj ETQq1 10.78	4314 rgBT 4.4	/Overlock
250	Vascular EndotheliumSelective Gene Induction by Tie2 Promoter/Enhancer in the Brain and Retina of a Transgenic Rat. Pharmaceutical Research, 2005, 22, 852-857.	3.5	17
251	Correlation of Organic Cation/Carnitine Transporter 1 and Multidrug Resistance-Associated Protein 1 Transport Activities With Protein Expression Levels in Primary Cultured Human Tracheal, Bronchial, and Alveolar Epithelial Cells. Journal of Pharmaceutical Sciences, 2016, 105, 876-883.	3.3	17
252	Quantitative Targeted Absolute Proteomics of Transporters and Pharmacoproteomics-Based Reconstruction of P-Glycoprotein Function in Mouse Small Intestine. Molecular Pharmaceutics, 2016, 13, 2443-2456.	4.6	17

#	Article	IF	CITATIONS
253	Interaction of Doxorubicin with Nuclei Isolated from Rat Liver and Kidney. Journal of Pharmaceutical Sciences, 1984, 73, 524-528.	3.3	16
254	Serum Protein Binding of Lomefloxacin, a New Antimicrobial Agent, and Its Related Quinolones. Journal of Pharmaceutical Sciences, 1989, 78, 504-507.	3.3	16
255	Age-Related Change in Tissue-to-Plasma Partition Coefficient of Cefazolin for Noneliminating Organs in the Rat. Journal of Pharmaceutical Sciences, 1989, 78, 535-540.	3.3	16
256	Receptor-mediated endocytosis of A14-125I-insulin by the nonfiltering perfused rat kidney. Biochimica Et Biophysica Acta - General Subjects, 1991, 1073, 442-450.	2.4	16
257	Brain-to-blood active transport of β-alanine across the blood-brain barrier. FEBS Letters, 1997, 400, 131-135.	2.8	16
258	Differences in the hepatobiliary transport of two quinolone antibiotics, grepafloxacin and lomefloxacin, in the rat. , 1999, 20, 151-158.		16
259	PKC/MAPK signaling suppression by retinal pericyte conditioned medium prevents retinal endothelial cell proliferation. Journal of Cellular Physiology, 2005, 203, 378-386.	4.1	16
260	Enhancement of Zidovudine Uptake by Dehydroepiandrosterone Sulfate in Rat Syncytiotrophoblast Cell Line TR-TBT 18d-1. Drug Metabolism and Disposition, 2008, 36, 2080-2085.	3.3	16
261	Contributions of Degradation and Brain-to-blood Elimination Across the Blood—Brain Barrier to Cerebral Clearance of Human Amyloid-β Peptide(1-40) in Mouse Brain. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1770-1777.	4.3	16
262	Pharmacological Significance of Prostaglandin E2 and D2 Transport at the Brain Barriers. Advances in Pharmacology, 2014, 71, 337-360.	2.0	16
263	Drug delivery to the brain utilizing blood-brain barrier transport systems. Journal of Controlled Release, 1994, 29, 163-169.	9.9	15
264	Hepatic uptake of octreotide, a long-acting somatostatin analogue, via a bile acid transport system. Pharmaceutical Research, 1995, 12, 12-17.	3.5	15
265	Selective gene silencing of rat ATP-binding cassette G2 transporter in an in vitro blood-brain barrier model by short interfering RNA. Journal of Neurochemistry, 2005, 93, 63-71.	3.9	15
266	Polyol Formation in Cell Lines of Rat Retinal Capillary Pericytes and Endothelial Cells (TR-rPCT and) Tj ETQq0 0 0	rgBT/Ove 1.4	rlock 10 Tf 50
267	Gene therapy for <i>Glut1</i> â€deficient mouse using an adenoâ€associated virus vector with the human intrinsic GLUT1 promoter. Journal of Gene Medicine, 2018, 20, e3013.	2.8	15
268	Evaluation of Organic Anion Transporter 1A2-knock-in Mice as a Model of Human Blood-brain Barrier. Drug Metabolism and Disposition, 2018, 46, 1767-1775.	3.3	15
269	Amyloid beta25â€35impairs docosahexaenoic acid efflux by downâ€regulating fatty acid transport protein 1 (FATP1/SLC27A1) protein expression in human brain capillary endothelial cells. Journal of Neurochemistry, 2019, 150, 385-401.	3.9	15
270	Activation of Annexin <scp>A2</scp> signaling at the blood–brain barrier in a mouse model of multiple sclerosis. Journal of Neurochemistry, 2022, 160, 662-674.	3.9	15

#	Article	IF	CITATIONS
271	Evidence for the existence of a common transport system of .BETAlactam antibiotics in isolated rat hepatocytes Journal of Antibiotics, 1985, 38, 1774-1780.	2.0	14
272	Age-related change of cefazolin binding to rat serum proteins and its relation to the molar ratio of free fatty acid to serum albumin Journal of Pharmacobio-dynamics, 1986, 9, 81-87.	0.5	14
273	Fgf2 is expressed in human and murine embryonic choroid plexus and affects choroid plexus epithelial cell behaviour. Cerebrospinal Fluid Research, 2008, 5, 20.	0.5	14
274	Differential binding of thyroxine and triiodothyronine to acidic isoforms of thyroid hormone binding globulin in human serum. Biochemistry, 1988, 27, 3624-3628.	2.5	13
275	Transport of the New Quinolone Antibacterial Agetns of Lomefloxacin and Ofloxacin by Rat Erythrocytes, and Its Relation to the Nicotinic Acid Transport System Journal of Pharmacobio-dynamics, 1991, 14, 475-481.	0.5	13
276	Relationship between Lipophilicity and Binding Affinity with Human Serum Albumin for Penicillin and Cephem Antibiotics Journal of Pharmacobio-dynamics, 1992, 15, 99-106.	0.5	13
277	Expression of the Na+ Dependent Uridine Transport System of Rabbit Small Intestine: Studies with mRNA-Injected Xenopus laevis Oocytes Biological and Pharmaceutical Bulletin, 1993, 16, 493-496.	1.4	13
278	Kinetics of quinolone antibiotics in rats: efflux from cerebrospinal fluid to the circulation. Pharmaceutical Research, 1996, 13, 1065-1068.	3.5	13
279	All-trans retinoic acid enhances gemcitabine cytotoxicity in human pancreatic cancer cell line AsPC-1 by up-regulating protein expression of deoxycytidine kinase. European Journal of Pharmaceutical Sciences, 2017, 103, 116-121.	4.0	13
280	Increased Expression of Renal Drug Transporters in a Mouse Model of Familial Alzheimer's Disease. Journal of Pharmaceutical Sciences, 2019, 108, 2484-2489.	3.3	13
281	Polarized hemichannel opening of pannexin 1/connexin 43 contributes to dysregulation of transport function in blood-brain barrier endothelial cells. Neurochemistry International, 2020, 132, 104600.	3.8	13
282	Gene therapy for a mouse model of glucose transporter-1 deficiency syndrome. Molecular Genetics and Metabolism Reports, 2017, 10, 67-74.	1.1	12
283	Quantification of ENT1 and ENT2 Proteins at the Placental Barrier and Contribution of These Transporters to Ribavirin Uptake. Journal of Pharmaceutical Sciences, 2019, 108, 3917-3922.	3.3	12
284	Epidermal growth factor targeting of bacteriophage to the choroid plexus for gene delivery to the central nervous system via cerebrospinal fluid. Brain Research, 2010, 1359, 1-13.	2.2	11
285	Inner Blood–Retinal Barrier Mediates L-Isomer-Predominant Transport of Serine. Journal of Pharmaceutical Sciences, 2011, 100, 3892-3903.	3.3	11
286	Recurrent anaplastic meningioma treated by sunitinib based on results from quantitative proteomics. Neuropathology and Applied Neurobiology, 2012, 38, 105-110.	3.2	11
287	Abnormal <i>N</i> -Glycosylation of a Novel Missense Creatine Transporter Mutant, G561R, Associated with Cerebral Creatine Deficiency Syndromes Alters Transporter Activity and Localization. Biological and Pharmaceutical Bulletin, 2017, 40, 49-55.	1.4	11
288	Recent Progress in Blood–Brain Barrier and Blood–CSF Barrier Transport Research: Pharmaceutical Relevance for Drug Delivery to the Brain. AAPS Advances in the Pharmaceutical Sciences Series, 2014, , 23-62.	0.6	11

#	Article	IF	CITATIONS
289	Carbenicillin Prodrugs: Stability Kinetics of α-phenyl and α-indanyl Esters in Aqueous Solution. Journal of Pharmaceutical Sciences, 1979, 68, 1259-1263.	3.3	10
290	Regulation of extracellular-superoxide dismutase in rat retina pericytes. Redox Report, 2010, 15, 250-258.	4.5	10
291	Specific binding and clearance of [3H]dynorphin (1–13) in the perfused rat lung: an application of the multiple-indicator dilution method. Journal of Pharmacy and Pharmacology, 2011, 42, 879-882.	2.4	10
292	Global and Targeted Proteomics of Prostate Cancer Cell Secretome: Combination of 2-Dimensional Image-Converted Analysis of Liquid Chromatography and Mass Spectrometry and In Silico Selection Selected Reaction Monitoring Analysis. Journal of Pharmaceutical Sciences, 2016, 105, 3440-3452.	3.3	10
293	Identification and Validation of Combination Plasma Biomarker of Afamin, Fibronectin and Sex Hormone-Binding Globulin to Predict Pre-eclampsia. Biological and Pharmaceutical Bulletin, 2021, 44, 804-815.	1.4	10
294	An Atlas of the Quantitative Protein Expression of Anti-Epileptic-Drug Transporters, Metabolizing Enzymes and Tight Junctions at the Blood–Brain Barrier in Epileptic Patients. Pharmaceutics, 2021, 13, 2122.	4.5	10
295	Transporter mRNA Expression in a Conditionally Immortalized Rat Small Intestine Epithelial Cell Line (TR-SIE). Drug Metabolism and Pharmacokinetics, 2004, 19, 264-269.	2.2	9
296	Selective Protein Expression Changes of Leukocyte-Migration-Associated Cluster of Differentiation Antigens at the Blood–Brain Barrier in a Lipopolysaccharide-Induced Systemic Inflammation Mouse Model without Alteration of Transporters, Receptors or Tight Junction-Related Protein. Biological and Pharmaceutical Bulletin, 2019, 42, 944-953.	1.4	9
297	The Multipotential of Leucine-Rich α-2 Glycoprotein 1 as a Clinicopathological Biomarker of Glioblastoma. Journal of Neuropathology and Experimental Neurology, 2020, 79, 873-879.	1.7	9
298	Retinal selectivity of gene expression in rat retinal versus brain capillary endothelial cell lines by differential display analysis. Molecular Vision, 2004, 10, 537-43.	1.1	9
299	Theoretical consideration of drug distribution kinetics in a noneliminating organ: Comparison between a "homogeneous (well-stirred)―model and "nonhomogeneous (tube)―model. Journal of Pharmacokinetics and Pharmacodynamics, 1985, 13, 265-287.	0.6	8
300	Contribution of parenchymal and non-parenchymal liver cells to the clearance of hepatocyte growth factor from the circulation in rats. Pharmaceutical Research, 1995, 12, 1737-1740.	3.5	8
301	Cell density-dependent mitogenic effect and -independent cellular handling of epidermal growth factor in primary cultured rat hepatocytes. Journal of Hepatology, 1997, 26, 353-360.	3.7	8
302	Augmented expression of the tight junction protein occludin in brain endothelial cell line TR-BBB by rat angiopoietin-1 expressed in baculovirus-infected Sf plus insect cells. Pharmaceutical Research, 2002, 19, 1757-1760.	3.5	8
303	Brain Efflux Index Method: Characterization of Efflux Transport Across the Blood–Brain Barrier. , 2003, 89, 219-232.		8
304	MK2461, a Multitargeted Kinase Inhibitor, Suppresses the Progression of Pancreatic Cancer by Disrupting the Interaction Between Pancreatic Cancer Cells and Stellate Cells. Pancreas, 2017, 46, 557-566.	1.1	8
305	Carbenicillin Prodrugs: Kinetics of Intestinal Absorption Competing Degradation of the α-Esters of Carbenicillin and Prediction of Prodrug Absorbability from Quantitative Structure-Absorption Rate Relationship. Journal of Pharmaceutical Sciences, 1982, 71, 403-406.	3.3	7
306	Comparative Pharmacokinetics of Cefazolin in Awake and Urethane-Anesthetized Rats. Chemical and Pharmaceutical Bulletin, 1985, 33, 2153-2154.	1.3	7

#	Article	IF	CITATIONS
307	Application of Quantitative Targeted Absolute Proteomics to Profile Protein Expression Changes of Hepatic Transporters and Metabolizing Enzymes During Cholic Acid-Promoted Liver Regeneration. Journal of Pharmaceutical Sciences, 2017, 106, 2499-2508.	3.3	7
308	Cell-Type-Specific Spatiotemporal Expression of Creatine Biosynthetic Enzyme S-adenosylmethionine:guanidinoacetate N-methyltransferase in Developing Mouse Brain. Neurochemical Research, 2018, 43, 500-510.	3.3	7
309	A human <scp>blood–arachnoid</scp> barrier atlas of transporters, receptors, enzymes, and tight junction and marker proteins: Comparison with dog and pig in absolute abundance. Journal of Neurochemistry, 2022, 161, 187-208.	3.9	7
310	Selective Analysis of Mutual Displacement Effects at the Primary Binding Sites of Phenoxymethylpenicillin and Cephalothin Bindings to Human Serum Albumin Journal of Pharmacobio-dynamics, 1992, 15, 91-97.	0.5	6
311	A Novel Stromal Cell-Dependent B Lymphoid Stem-Like Cell Line That Induces Immunoglobulin Gene Rearrangement. Journal of Biochemistry, 1999, 125, 602-612.	1.7	6
312	Brain and Heart Specific Alteration of Methamphetamine (MAP) Distribution in MAP-Sensitized Rat Biological and Pharmaceutical Bulletin, 2003, 26, 506-509.	1.4	6
313	Gene expression of A6-like subgroup of ATP-binding cassette transporters in mouse brain parenchyma and microvessels. Anatomical Science International, 2018, 93, 456-463.	1.0	6
314	Scrambled Internal Standard Method for High-Throughput Protein Quantification by Matrix-Assisted Laser Desorption Ionization Tandem Mass Spectrometry. Journal of Proteome Research, 2017, 16, 1556-1565.	3.7	5
315	Targeted Proteomics-Based Quantitative Protein Atlas of Pannexin and Connexin Subtypes in Mouse and Human Tissues and Cancer Cell Lines. Journal of Pharmaceutical Sciences, 2020, 109, 1161-1168.	3.3	5
316	Specific binding of .BETAendorphin to the isolated renal basolateral membranes in vitro Chemical and Pharmaceutical Bulletin, 1990, 38, 3395-3399.	1.3	4
317	Regional Differences in the Absolute Abundance of Transporters, Receptors and Tight Junction Molecules at the Blood-Arachnoid Barrier and Blood-Spinal Cord Barrier among Cervical, Thoracic and Lumbar Spines in Dogs. Pharmaceutical Research, 2022, , 1.	3.5	4
318	Spleen Lymphocyte Kinetics in Mice under Normal and Inflammatory Conditions: An Application of the Transgenic Mouse Expressing .BETAGalactosidase (ROSA 26) Biological and Pharmaceutical Bulletin, 2002, 25, 1378-1380.	1.4	3
319	Identification of Blood–Brain Barrier-Permeable Proteins Derived from a Peripheral Organ: In Vivo and in Vitro Evidence of Blood-to-Brain Transport of Creatine Kinase. Molecular Pharmaceutics, 2019, 16, 247-257.	4.6	3
320	Determination of Intrinsic Creatine Transporter (Slc6a8) Activity and Creatine Transport Function of Leukocytes in Rats. Biological and Pharmaceutical Bulletin, 2020, 43, 474-479.	1.4	3
321	Degradation Kinetics of (±)-4′-Ethyl-2-methyl-3-(1-pyrrolidinyl)propiophenone Hydrochloride (HY-770) and Structure–Stability Relationship among its Analogues in Aqueous Solution. Journal of Pharmaceutical Sciences, 1989, 78, 57-61.	3.3	2
322	Blood–Brain Barrier (BBB) Pharmacoproteomics: A New Research Field Opened Up by Quantitative Targeted Absolute Proteomics (QTAP). AAPS Advances in the Pharmaceutical Sciences Series, 2014, , 63-100.	0.6	2
323	Blood-Arachnoid Barrier as a Dynamic Physiological and Pharmacological Interface Between Cerebrospinal Fluid and Blood. AAPS Advances in the Pharmaceutical Sciences Series, 2022, , 93-121.	0.6	2
324	Theoretical Study on the ATP Hydrolysis Mechanism of HisP Protein, the ATP-Binding Subunit of ABC Transporter. Materials Transactions, 2007, 48, 735-739.	1.2	1

#	Article	IF	CITATIONS
325	Distinct Transport Properties of Human Pannexin 1 and Connexin 32 Hemichannels. Journal of Pharmaceutical Sciences, 2020, 109, 1395-1402.	3.3	1
326	Organ Variation in Tissue to Plasma Partition Coefficients of Adriamycin, Daunomycin and Actinomycin-D: Correlation to Tissue DNA Concentrations. , 1984, , 359-378.		1
327	Reconstitution of the blood-retinal barrier and blood-brain barrier, and its application for drug delivery study Drug Delivery System, 2001, 16, 29-38.	0.0	1
328	Blood-Brain Barrier Transport of Ebiratide and Its Uptake by Cerebral Neuronal Cells. Annals of the New York Academy of Sciences, 1993, 680, 609-611.	3.8	0
329	Pharmacokinetic simulator with three-dimensional graphical models: Sociotechnological interface of pharmacokinetics for medical personnel, patients, and medicinal chemists. International Congress Series, 2005, 1284, 296-301.	0.2	0
330	Physiological pharmacokinetics and membrane transport for drug delivery research. International Congress Series, 2005, 1284, 266-273.	0.2	0
331	Transport of Basic Peptides at the Blood–Brain Barrier. , 2006, , 1443-1448.		0
332	Professor Akira Tsuji: Scientist, Educator, and Leader. Journal of Pharmaceutical Sciences, 2011, 100, 3541-3546.	3.3	0
333	Perspectives on a pharmacokinetics legend: C versus T (contributions over time). Journal of Pharmaceutical Sciences, 2013, 102, 2889-2894.	3.3	0
334	Front cover: Large-scale multiplex absolute protein quantification of drug-metabolizing enzymes and transporters in human intestine, liver, and kidney microsomes by SWATH-MS: Comparison with MRM/SRM and HR-MRM/PRM. Proteomics, 2016, 16, NA-NA.	2.2	0
335	Professor Yuichi Sugiyama: A Brilliant, Creative, Amicable, Charming, and Humorous Pharmaceutical Scientist. Journal of Pharmaceutical Sciences, 2017, 106, 2188-2194.	3.3	0
336	Blood-Brain Barrier Transport and Drug Targeting to the Brain. , 2002, , 313-326.		0
337	New in vitro model for the brain drug delivery research: Conditionally immortalized cell lines as novel models of the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB). Drug Delivery System, 2003, 18, 118-125.	0.0	0
338	Quantitative targeted absolute proteomics (QTAP)-based rational research on the human blood-brain barrier transport. Drug Delivery System, 2013, 28, 270-278.	0.0	0
339	The Difference of Blood-Brain Barrier Transport and Concentration in Brain Interstitial Fluid of Choline in SHRSP and WKY. International Heart Journal, 1990, 31, 549-549.	0.6	0
340	Brain-to-blood transporters for endogenous substrates and xenobiotics at the blood-brain barrier: An overview of biology and methodology. Neurotherapeutics, 2005, 2, 63-72.	4.4	0