
Michael Gale Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5426431/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immune Signaling by RIG-I-like Receptors. Immunity, 2011, 34, 680-692.	6.6	1,570
2	Shared and Unique Functions of the DExD/H-Box Helicases RIG-I, MDA5, and LGP2 in Antiviral Innate Immunity. Journal of Immunology, 2005, 175, 2851-2858.	0.4	1,438
3	Viruses and interferon: a fight for supremacy. Nature Reviews Immunology, 2002, 2, 675-687.	10.6	1,078
4	Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2992-2997.	3.3	991
5	Distinct RIG-I and MDA5 Signaling by RNA Viruses in Innate Immunity. Journal of Virology, 2008, 82, 335-345.	1.5	897
6	Regulating Intracellular Antiviral Defense and Permissiveness to Hepatitis C Virus RNA Replication through a Cellular RNA Helicase, RIG-I. Journal of Virology, 2005, 79, 2689-2699.	1.5	830
7	Regulation of Interferon Regulatory Factor-3 by the Hepatitis C Virus Serine Protease. Science, 2003, 300, 1145-1148.	6.0	762
8	2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature, 2010, 468, 452-456.	13.7	736
9	Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 582-587.	3.3	667
10	Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature, 2008, 454, 523-527.	13.7	646
11	Control of PKR Protein Kinase by Hepatitis C Virus Nonstructural 5A Protein: Molecular Mechanisms of Kinase Regulation. Molecular and Cellular Biology, 1998, 18, 5208-5218.	1.1	584
12	Evasion of intracellular host defence by hepatitis C virus. Nature, 2005, 436, 939-945.	13.7	582
13	Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell, 2021, 184, 169-183.e17.	13.5	580
14	Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature, 2007, 448, 816-819.	13.7	536
15	Inhibition of Retinoic Acid-Inducible Gene I-Mediated Induction of Beta Interferon by the NS1 Protein of Influenza A Virus. Journal of Virology, 2007, 81, 514-524.	1.5	529
16	Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2986-2991.	3.3	506
17	Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5848-5853.	3.3	488
18	Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14590-14595.	3.3	444

#	Article	IF	CITATIONS
19	Autoimmunity Initiates in Nonhematopoietic Cells and Progresses via Lymphocytes in an Interferon-Dependent Autoimmune Disease. Immunity, 2012, 36, 120-131.	6.6	428
20	Nonself RNA-Sensing Mechanism of RIG-I Helicase and Activation of Antiviral Immune Responses. Molecular Cell, 2008, 29, 428-440.	4.5	416
21	Ebola Virus VP35 Protein Binds Double-Stranded RNA and Inhibits Alpha/Beta Interferon Production Induced by RIG-I Signaling. Journal of Virology, 2006, 80, 5168-5178.	1.5	405
22	Rapid generation of a mouse model for Middle East respiratory syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4970-4975.	3.3	399
23	Viral and therapeutic control of IFN-beta promoter stimulator 1 during hepatitis C virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6001-6006.	3.3	394
24	Recognition of viruses by cytoplasmic sensors. Current Opinion in Immunology, 2010, 22, 41-47.	2.4	378
25	Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature, 2011, 479, 423-427.	13.7	364
26	IL-1β Production through the NLRP3 Inflammasome by Hepatic Macrophages Links Hepatitis C Virus Infection with Liver Inflammation and Disease. PLoS Pathogens, 2013, 9, e1003330.	2.1	364
27	Molecular Mechanisms of Interferon Resistance Mediated by Viral-Directed Inhibition of PKR, the Interferon-Induced Protein Kinase. , 1998, 78, 29-46.		363
28	RIG-I in RNA virus recognition. Virology, 2015, 479-480, 110-121.	1.1	353
29	West Nile virus infection and immunity. Nature Reviews Microbiology, 2013, 11, 115-128.	13.6	349
30	RalB GTPase-Mediated Activation of the lκB Family Kinase TBK1 Couples Innate Immune Signaling to Tumor Cell Survival. Cell, 2006, 127, 157-170.	13.5	344
31	RIG-I and Other RNA Sensors in Antiviral Immunity. Annual Review of Immunology, 2018, 36, 667-694.	9.5	343
32	Disruption of hepatitis C virus RNA replication through inhibition of host protein geranylgeranylation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15865-15870.	3.3	341
33	Distinct Poly(I-C) and Virus-activated Signaling Pathways Leading to Interferon-β Production in Hepatocytes. Journal of Biological Chemistry, 2005, 280, 16739-16747.	1.6	322
34	Toll-Like Receptor 3 Has a Protective Role against West Nile Virus Infection. Journal of Virology, 2008, 82, 10349-10358.	1.5	298
35	Establishment and Maintenance of the Innate Antiviral Response to West Nile Virus Involves both RIG-I and MDA5 Signaling through IPS-1. Journal of Virology, 2008, 82, 609-616.	1.5	286
36	Translational Control of Viral Gene Expression in Eukaryotes. Microbiology and Molecular Biology Reviews, 2000, 64, 239-280.	2.9	285

#	Article	IF	CITATIONS
37	IRF-3, IRF-5, and IRF-7 Coordinately Regulate the Type I IFN Response in Myeloid Dendritic Cells Downstream of MAVS Signaling. PLoS Pathogens, 2013, 9, e1003118.	2.1	270
38	Identification of FBL2 As a Geranylgeranylated Cellular Protein Required for Hepatitis C Virus RNA Replication. Molecular Cell, 2005, 18, 425-434.	4.5	269
39	Regulation of hepatic innate immunity by hepatitis C virus. Nature Medicine, 2013, 19, 879-888.	15.2	264
40	Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman primate. Nature Medicine, 2016, 22, 1256-1259.	15.2	241
41	Antiapoptotic and Oncogenic Potentials of Hepatitis C Virus Are Linked to Interferon Resistance by Viral Repression of the PKR Protein Kinase. Journal of Virology, 1999, 73, 6506-6516.	1.5	241
42	PKR and RNase L Contribute to Protection against Lethal West Nile Virus Infection by Controlling Early Viral Spread in the Periphery and Replication in Neurons. Journal of Virology, 2006, 80, 7009-7019.	1.5	220
43	IL-1β Signaling Promotes CNS-Intrinsic Immune Control of West Nile Virus Infection. PLoS Pathogens, 2012, 8, e1003039.	2.1	215
44	The Nucleotide Sensor ZBP1 and Kinase RIPK3 Induce the Enzyme IRG1 to Promote an Antiviral Metabolic State in Neurons. Immunity, 2019, 50, 64-76.e4.	6.6	214
45	Alpha Interferon Induces Distinct Translational Control Programs To Suppress Hepatitis C Virus RNA Replication. Journal of Virology, 2003, 77, 3898-3912.	1.5	211
46	Interleukin-1β Induces mtDNA Release to Activate Innate Immune Signaling via cGAS-STING. Molecular Cell, 2019, 74, 801-815.e6.	4.5	203
47	IPS-1 Is Essential for the Control of West Nile Virus Infection and Immunity. PLoS Pathogens, 2010, 6, e1000757.	2.1	199
48	Interferon-λ restricts West Nile virus neuroinvasion by tightening the blood-brain barrier. Science Translational Medicine, 2015, 7, 284ra59.	5.8	197
49	Apolipoprotein E on hepatitis C virion facilitates infection through interaction with low-density lipoprotein receptor. Virology, 2009, 394, 99-108.	1.1	195
50	Differential innate immune response programs in neuronal subtypes determine susceptibility to infection in the brain by positive-stranded RNA viruses. Nature Medicine, 2013, 19, 458-464.	15.2	187
51	The Mitochondrial Targeting Chaperone 14-3-3ε Regulates a RIG-I Translocon that Mediates Membrane Association and Innate Antiviral Immunity. Cell Host and Microbe, 2012, 11, 528-537.	5.1	184
52	An <i>Alphavirus</i> -derived replicon RNA vaccine induces SARS-CoV-2 neutralizing antibody and T cell responses in mice and nonhuman primates. Science Translational Medicine, 2020, 12, .	5.8	181
53	RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity. Current Opinion in Virology, 2011, 1, 167-176.	2.6	180
54	Innate immunity against HIV-1 infection. Nature Immunology, 2015, 16, 554-562.	7.0	179

#	Article	IF	CITATIONS
55	Differential Activation of the Transcription Factor IRF1ÂUnderlies the Distinct Immune Responses Elicited by Type I and Type III Interferons. Immunity, 2019, 51, 451-464.e6.	6.6	179
56	Resistance to Alpha/Beta Interferon Is a Determinant of West Nile Virus Replication Fitness and Virulence. Journal of Virology, 2006, 80, 9424-9434.	1.5	177
57	De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2. Science, 2020, 370, 1208-1214.	6.0	172
58	The Essential, Nonredundant Roles of RIG-I and MDA5 in Detecting and Controlling West Nile Virus Infection. Journal of Virology, 2013, 87, 11416-11425.	1.5	170
59	Regulation of PKR and IRF-1 during hepatitis C virus RNA replication. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4650-4655.	3.3	169
60	West Nile Virus Evades Activation of Interferon Regulatory Factor 3 through RIG-I-Dependent and -Independent Pathways without Antagonizing Host Defense Signaling. Journal of Virology, 2006, 80, 2913-2923.	1.5	164
61	Cell-Specific IRF-3 Responses Protect against West Nile Virus Infection by Interferon-Dependent and -Independent Mechanisms. PLoS Pathogens, 2007, 3, e106.	2.1	164
62	RIPK3 Restricts Viral Pathogenesis via Cell Death-Independent Neuroinflammation. Cell, 2017, 169, 301-313.e11.	13.5	163
63	Thymic stromal lymphopoietin is induced by respiratory syncytial virus–infected airway epithelial cells and promotes a type 2 response to infection. Journal of Allergy and Clinical Immunology, 2012, 130, 1187-1196.e5.	1.5	158
64	MLKL Activation Triggers NLRP3-Mediated Processing and Release of IL-1Î ² Independently of Gasdermin-D. Journal of Immunology, 2017, 198, 2156-2164.	0.4	158
65	Interferon Response Factors 3 and 7 Protect against Chikungunya Virus Hemorrhagic Fever and Shock. Journal of Virology, 2012, 86, 9888-9898.	1.5	157
66	Repression of the PKR protein kinase by the hepatitis C virus NS5A protein: a potential mechanism of interferon resistance. Clinical and Diagnostic Virology, 1998, 10, 157-162.	1.8	156
67	2′-O Methylation of the Viral mRNA Cap by West Nile Virus Evades Ifit1-Dependent and -Independent Mechanisms of Host Restriction In Vivo. PLoS Pathogens, 2012, 8, e1002698.	2.1	142
68	The Host Response to West Nile Virus Infection Limits Viral Spread through the Activation of the Interferon Regulatory Factor 3 Pathway. Journal of Virology, 2004, 78, 7737-7747.	1.5	137
69	Interferon Regulatory Factor IRF-7 Induces the Antiviral Alpha Interferon Response and Protects against Lethal West Nile Virus Infection. Journal of Virology, 2008, 82, 8465-8475.	1.5	137
70	Imprinted SARS-CoV-2-specific memory lymphocytes define hybrid immunity. Cell, 2022, 185, 1588-1601.e14.	13.5	137
71	Principles of intracellular viral recognition. Current Opinion in Immunology, 2007, 19, 17-23.	2.4	136
72	Inhibition of Cellular Autophagy Deranges Dengue Virion Maturation. Journal of Virology, 2013, 87, 1312-1321.	1.5	136

#	Article	IF	CITATIONS
73	IFITM1 is a tight junction protein that inhibits hepatitis C virus entry. Hepatology, 2013, 57, 461-469.	3.6	134
74	The favorable IFNL3 genotype escapes mRNA decay mediated by AU-rich elements and hepatitis C virus–induced microRNAs. Nature Immunology, 2014, 15, 72-79.	7.0	133
75	Cytosolic Double-Stranded RNA Activates the NLRP3 Inflammasome via MAVS-Induced Membrane Permeabilization and K+ Efflux. Journal of Immunology, 2014, 193, 4214-4222.	0.4	132
76	Differential recognition of double-stranded RNA by RIG-l–like receptors in antiviral immunity. Journal of Experimental Medicine, 2008, 205, 1523-1527.	4.2	129
77	RNase L Activates the NLRP3 Inflammasome during Viral Infections. Cell Host and Microbe, 2015, 17, 466-477.	5.1	128
78	Human DNA-PK activates a STING-independent DNA sensing pathway. Science Immunology, 2020, 5, .	5.6	122
79	CARD games between virus and host get a new player. Trends in Immunology, 2006, 27, 1-4.	2.9	121
80	Human Immunodeficiency Virus Type 1 Mediates Global Disruption of Innate Antiviral Signaling and Immune Defenses within Infected Cells. Journal of Virology, 2009, 83, 10395-10405.	1.5	121
81	The A946T variant of the RNA sensor IFIH1 mediates an interferon program that limits viral infection but increases the risk for autoimmunity. Nature Immunology, 2017, 18, 744-752.	7.0	119
82	Induction of IFN-β and the Innate Antiviral Response in Myeloid Cells Occurs through an IPS-1-Dependent Signal That Does Not Require IRF-3 and IRF-7. PLoS Pathogens, 2009, 5, e1000607.	2.1	118
83	RNase L releases a small RNA from HCV RNA that refolds into a potent PAMP. Rna, 2010, 16, 2108-2119.	1.6	117
84	Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nature Medicine, 2018, 24, 368-374.	15.2	117
85	Interferon regulatory factor-3 activation, hepatic interferon-stimulated gene expression, and immune cell infiltration in hepatitis C virus patients. Hepatology, 2008, 47, 799-809.	3.6	112
86	The RIG-I-like Receptor LGP2 Controls CD8+ T Cell Survival and Fitness. Immunity, 2012, 37, 235-248.	6.6	110
87	Hepatitis C Virus Infection Induces Autocrine Interferon Signaling by Human Liver Endothelial Cells and Release of Exosomes, Which Inhibits Viral Replication. Gastroenterology, 2015, 148, 392-402.e13.	0.6	107
88	Interferon Lambda Genetics and Biology in Regulation of Viral Control. Frontiers in Immunology, 2017, 8, 1707.	2.2	107
89	HIV infection of dendritic cells subverts the IFN induction pathway via IRF-1 and inhibits type 1 IFN production. Blood, 2011, 118, 298-308.	0.6	102
90	Regional astrocyte IFN signaling restricts pathogenesis during neurotropic viral infection. Journal of Clinical Investigation, 2017, 127, 843-856.	3.9	100

#	Article	IF	CITATIONS
91	The Innate Immune Adaptor Molecule MyD88 Restricts West Nile Virus Replication and Spread in Neurons of the Central Nervous System. Journal of Virology, 2010, 84, 12125-12138.	1.5	96
92	Inflammasome Adaptor Protein Apoptosis-Associated Speck-Like Protein Containing CARD (ASC) Is Critical for the Immune Response and Survival in West Nile Virus Encephalitis. Journal of Virology, 2013, 87, 3655-3667.	1.5	96
93	Direct, Interferon-Independent Activation of the CXCL10 Promoter by NF-κB and Interferon Regulatory Factor 3 during Hepatitis C Virus Infection. Journal of Virology, 2014, 88, 1582-1590.	1.5	96
94	Rabies Virus Infection Induces Type I Interferon Production in an IPS-1 Dependent Manner While Dendritic Cell Activation Relies on IFNAR Signaling. PLoS Pathogens, 2010, 6, e1001016.	2.1	93
95	Beta Interferon Controls West Nile Virus Infection and Pathogenesis in Mice. Journal of Virology, 2011, 85, 7186-7194.	1.5	93
96	Dramatic enhancement of the detection limits of bioassays via ultrafast deposition of polydopamine. Nature Biomedical Engineering, 2017, 1, .	11.6	93
97	A Short Hairpin RNA Screen of Interferon-Stimulated Genes Identifies a Novel Negative Regulator of the Cellular Antiviral Response. MBio, 2013, 4, e00385-13.	1.8	92
98	Interferon-λ modulates dendritic cells to facilitate T cell immunity during infection with influenza A virus. Nature Immunology, 2019, 20, 1035-1045.	7.0	92
99	SARS-CoV-2 ORF6 Disrupts Bidirectional Nucleocytoplasmic Transport through Interactions with Rae1 and Nup98. MBio, 2021, 12, .	1.8	92
100	Proteomic Analysis of Mitochondrial-Associated ER Membranes (MAM) during RNA Virus Infection Reveals Dynamic Changes in Protein and Organelle Trafficking. PLoS ONE, 2015, 10, e0117963.	1.1	91
101	Convergent Evolution of Escape from Hepaciviral Antagonism in Primates. PLoS Biology, 2012, 10, e1001282.	2.6	90
102	The Hepatitis C Virus-Induced Membranous Web and Associated Nuclear Transport Machinery Limit Access of Pattern Recognition Receptors to Viral Replication Sites. PLoS Pathogens, 2016, 12, e1005428.	2.1	90
103	Intracellular Innate Immune Cascades and Interferon Defenses That Control Hepatitis C Virus. Journal of Interferon and Cytokine Research, 2009, 29, 489-498.	0.5	87
104	Uridine Composition of the Poly-U/UC Tract of HCV RNA Defines Non-Self Recognition by RIG-I. PLoS Pathogens, 2012, 8, e1002839.	2.1	87
105	Regulation of Interferon-Induced Protein Kinase PKR: Modulation of P58 ^{IPK} Inhibitory Function by a Novel Protein, P52 ^{rIPK} . Molecular and Cellular Biology, 1998, 18, 859-871.	1.1	86
106	Miscarriage and stillbirth following maternal Zika virus infection in nonhuman primates. Nature Medicine, 2018, 24, 1104-1107.	15.2	85
107	Functional and Therapeutic Analysis of Hepatitis C Virus NS3·4A Protease Control of Antiviral Immune Defense. Journal of Biological Chemistry, 2007, 282, 10792-10803.	1.6	82
108	RNA-binding protein isoforms ZAP-S and ZAP-L have distinct antiviral and immune resolution functions. Nature Immunology, 2019, 20, 1610-1620.	7.0	82

#	Article	IF	CITATIONS
109	Genetic Diversity in the Collaborative Cross Model Recapitulates Human West Nile Virus Disease Outcomes. MBio, 2015, 6, e00493-15.	1.8	80
110	Viral Evolution and Interferon Resistance of Hepatitis C Virus RNA Replication in a Cell Culture Model. Journal of Virology, 2004, 78, 11591-11604.	1.5	77
111	A Systems Biology Approach Reveals that Tissue Tropism to West Nile Virus Is Regulated by Antiviral Genes and Innate Immune Cellular Processes. PLoS Pathogens, 2013, 9, e1003168.	2.1	77
112	Coexpressed RIC-I Agonist Enhances Humoral Immune Response to Influenza Virus DNA Vaccine. Journal of Virology, 2011, 85, 1370-1383.	1.5	76
113	Interferon Regulatory Factor-1 (IRF-1) Shapes Both Innate and CD8+ T Cell Immune Responses against West Nile Virus Infection. PLoS Pathogens, 2011, 7, e1002230.	2.1	75
114	Modulation of calcium signaling pathway by hepatitis C virus core protein stimulates NLRP3 inflammasome activation. PLoS Pathogens, 2019, 15, e1007593.	2.1	75
115	Calpain drives pyroptotic vimentin cleavage, intermediate filament loss, and cell rupture that mediates immunostimulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5061-5070.	3.3	75
116	SARS-CoV-2 Infects Human Pluripotent Stem Cell-Derived Cardiomyocytes, Impairing Electrical and Mechanical Function. Stem Cell Reports, 2021, 16, 478-492.	2.3	75
117	Regulation of CXCL-8 (Interleukin-8) Induction by Double-Stranded RNA Signaling Pathways during Hepatitis C Virus Infection. Journal of Virology, 2007, 81, 309-318.	1.5	71
118	Multivalent designed proteins neutralize SARS-CoV-2 variants of concern and confer protection against infection in mice. Science Translational Medicine, 2022, 14, eabn1252.	5.8	68
119	S6K-STING interaction regulates cytosolic DNA–mediated activation of the transcription factor IRF3. Nature Immunology, 2016, 17, 514-522.	7.0	67
120	Innate Immune Tolerance and the Role of Kupffer Cells in Differential Responses to Interferon Therapy Among Patients With HCV Genotype 1 Infection. Gastroenterology, 2013, 144, 402-413.e12.	0.6	66
121	Reemergence of Hepatitis C Virus after 8.5 Years in a Patient with Hypogammaglobulinemia: Evidence for an Occult Viral Reservoir. Journal of Infectious Diseases, 2005, 192, 1088-1092.	1.9	65
122	Fatal immunity and the 1918 virus. Nature, 2007, 445, 267-268.	13.7	65
123	The regulation of hepatitis C virus (HCV) internal ribosome-entry site-mediated translation by HCV replicons and nonstructural proteins. Journal of General Virology, 2003, 84, 535-543.	1.3	64
124	Innate Antiviral Immune Signaling, Viral Evasion and Modulation by HIV-1. Journal of Molecular Biology, 2014, 426, 1161-1177.	2.0	64
125	Deficient IFN Signaling by Myeloid Cells Leads to MAVS-Dependent Virus-Induced Sepsis. PLoS Pathogens, 2014, 10, e1004086.	2.1	63
126	Long Double-Stranded RNA Induces an Antiviral Response Independent of IFN Regulatory Factor 3, IFN-β Promoter Stimulator 1, and IFN. Journal of Immunology, 2009, 183, 6545-6553.	0.4	60

#	Article	IF	CITATIONS
127	RIG-I Like Receptors in Antiviral Immunity and Therapeutic Applications. Viruses, 2011, 3, 906-919.	1.5	59
128	Activation of the Interferon-Î ² Promoter During Hepatitis C Virus RNA Replication. Viral Immunology, 2002, 15, 29-40.	0.6	57
129	Inhibitor of κB Kinase ϵ (IKKϵ), STAT1, and IFIT2 Proteins Define Novel Innate Immune Effector Pathway against West Nile Virus Infection. Journal of Biological Chemistry, 2011, 286, 44412-44423.	1.6	57
130	Vpu Mediates Depletion of Interferon Regulatory Factor 3 during HIV Infection by a Lysosome-Dependent Mechanism. Journal of Virology, 2012, 86, 8367-8374.	1.5	57
131	Hepatitis C Virus Pathogen Associated Molecular Pattern (PAMP) Triggers Production of Lambda-Interferons by Human Plasmacytoid Dendritic Cells. PLoS Pathogens, 2013, 9, e1003316.	2.1	57
132	Targeting Innate Immunity for Antiviral Therapy through Small Molecule Agonists of the RLR Pathway. Journal of Virology, 2016, 90, 2372-2387.	1.5	56
133	Regulation of Retinoic Acid Inducible Gene-I (RIG-I) Activation by the Histone Deacetylase 6. EBioMedicine, 2016, 9, 195-206.	2.7	55
134	Interferon lambda 4 expression is suppressed by the host during viral infection. Journal of Experimental Medicine, 2016, 213, 2539-2552.	4.2	55
135	The early local and systemic Type I interferon responses to ultraviolet B light exposure are cGAS dependent. Scientific Reports, 2020, 10, 7908.	1.6	53
136	SnapShot: Interferon Signaling. Cell, 2015, 163, 1808-1808.e1.	13.5	51
137	Comparative Analysis of African and Asian Lineage-Derived Zika Virus Strains Reveals Differences in Activation of and Sensitivity to Antiviral Innate Immunity. Journal of Virology, 2019, 93, .	1.5	51
138	Zika virus and the nonmicrocephalic fetus: whyÂweÂshould still worry. American Journal of Obstetrics and Gynecology, 2019, 220, 45-56.	0.7	51
139	Isoflavone Agonists of IRF-3 Dependent Signaling Have Antiviral Activity against RNA Viruses. Journal of Virology, 2012, 86, 7334-7344.	1.5	50
140	Pattern Recognition Receptor MDA5 Modulates CD8 ⁺ T Cell-Dependent Clearance of West Nile Virus from the Central Nervous System. Journal of Virology, 2013, 87, 11401-11415.	1.5	50
141	Versican is produced by Trif- and type I interferon-dependent signaling in macrophages and contributes to fine control of innate immunity in lungs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L1069-L1086.	1.3	50
142	RIG-I-like receptors direct inflammatory macrophage polarization against West Nile virus infection. Nature Communications, 2019, 10, 3649.	5.8	50
143	Hepatitis C Virus Sensing by Human Trophoblasts Induces Innate Immune Responses and Recruitment of Maternal NK Cells: Potential Implications for Limiting Vertical Transmission. Journal of Immunology, 2015, 195, 3737-3747.	0.4	49
144	Innate cell microenvironments in lymph nodes shape the generation of T cell responses during type I inflammation. Science Immunology, 2021, 6, .	5.6	49

#	Article	IF	CITATIONS
145	Identification of a Natural Viral RNA Motif That Optimizes Sensing of Viral RNA by RIG-I. MBio, 2015, 6, e01265-15.	1.8	48
146	Spatiotemporal dynamics of innate immune signaling via RIG-l–like receptors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15778-15788.	3.3	48
147	Regulation of innate immunity against hepatitis C virus infection. Hepatology Research, 2008, 38, 115-122.	1.8	46
148	Cell-intrinsic innate immune control of West Nile virus infection. Trends in Immunology, 2012, 33, 522-530.	2.9	46
149	A Mouse Model of Chronic West Nile Virus Disease. PLoS Pathogens, 2016, 12, e1005996.	2.1	46
150	Interleukin- $1\hat{I}^2$ Signaling in Dendritic Cells Induces Antiviral Interferon Responses. MBio, 2018, 9, .	1.8	45
151	A Trypanosoma brucei gene family encoding protein kinases with catalytic domains structurally related to Nek1 and NIMA. Molecular and Biochemical Parasitology, 1993, 59, 111-121.	0.5	44
152	Inhibition of Double-Stranded RNA- and Tumor Necrosis Factor Alpha-Mediated Apoptosis by Tetratricopeptide Repeat Protein and Cochaperone P58 ^{IPK} . Molecular and Cellular Biology, 1999, 19, 4757-4765.	1.1	41
153	Risk of Zika microcephaly correlates with features of maternal antibodies. Journal of Experimental Medicine, 2019, 216, 2302-2315.	4.2	41
154	DHX15 Is a Coreceptor for RLR Signaling That Promotes Antiviral Defense Against RNA Virus Infection. Journal of Interferon and Cytokine Research, 2019, 39, 331-346.	0.5	41
155	Endomembrane targeting of human OAS1 p46 augments antiviral activity. ELife, 2021, 10, .	2.8	41
156	Control of Innate Immune Signaling and Membrane Targeting by the Hepatitis C Virus NS3/4A Protease Are Governed by the NS3 Helix α ₀ . Journal of Virology, 2012, 86, 3112-3120.	1.5	40
157	Viral Evasion of the Interferon System. Journal of Interferon and Cytokine Research, 2009, 29, 475-476.	0.5	39
158	Hepatitis-C-virus-induced microRNAs dampen interferon-mediated antiviral signaling. Nature Medicine, 2016, 22, 1475-1481.	15.2	39
159	A small-molecule IRF3 agonist functions as an influenza vaccine adjuvant by modulating the antiviral immune response. Vaccine, 2017, 35, 1964-1971.	1.7	39
160	Oas1b-dependent Immune Transcriptional Profiles of West Nile Virus Infection in the Collaborative Cross. G3: Genes, Genomes, Genetics, 2017, 7, 1665-1682.	0.8	38
161	Early cellular innate immune responses drive Zika viral persistence and tissue tropism in pigtail macaques. Nature Communications, 2018, 9, 3371.	5.8	38
162	RIG-I Signaling Is Essential for Influenza B Virus-Induced Rapid Interferon Gene Expression. Journal of Virology, 2015, 89, 12014-12025.	1.5	36

#	Article	IF	CITATIONS
163	Class A Scavenger Receptor–Mediated Double-Stranded RNA Internalization Is Independent of Innate Antiviral Signaling and Does Not Require Phosphatidylinositol 3-Kinase Activity. Journal of Immunology, 2015, 195, 3858-3865.	0.4	36
164	Increased mucosal neutrophil survival is associated with altered microbiota in HIV infection. PLoS Pathogens, 2019, 15, e1007672.	2.1	36
165	Hepatitis C Virus Evasion from RIG-I-Dependent Hepatic Innate Immunity. Gastroenterology Research and Practice, 2010, 2010, 1-8.	0.7	34
166	Novel antiviral host factor, TNK1, regulates IFN signaling through serine phosphorylation of STAT1. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1909-1914.	3.3	34
167	Immunoprofiles of human Sertoli cells infected with Zika virus reveals unique insights into host-pathogen crosstalk. Scientific Reports, 2018, 8, 8702.	1.6	34
168	The Oncogenic Potential of Hepatitis C Virus NS5A Sequence Variants Is Associated with PKR Regulation. Journal of Interferon and Cytokine Research, 2005, 25, 152-164.	0.5	33
169	Measure and Countermeasure: Type I IFN (IFN-α/β) Antiviral Response against West Nile Virus. Journal of Innate Immunity, 2009, 1, 435-445.	1.8	33
170	Fighting the Flu with Inflammasome Signaling. Immunity, 2009, 30, 476-478.	6.6	33
171	Effector genes of interferon action against hepatitis C virus. Hepatology, 2003, 37, 975-978.	3.6	32
172	Nitric oxide controls an inflammatory-like Ly6ChiPDCA1+ DC subset that regulates Th1 immune responses. Journal of Leukocyte Biology, 2010, 89, 443-455.	1.5	32
173	Hepatitis regulation by the inflammasome signaling pathway. Immunological Reviews, 2015, 265, 143-155.	2.8	32
174	Strategies for hepatitis C therapeutic intervention: now and next. Current Opinion in Pharmacology, 2004, 4, 465-470.	1.7	31
175	LGP2 Downregulates Interferon Production during Infection with Seasonal Human Influenza A Viruses That Activate Interferon Regulatory Factor 3. Journal of Virology, 2012, 86, 10733-10738.	1.5	31
176	Pathogen-Associated Molecular Pattern Recognition of Hepatitis C Virus Transmitted/Founder Variants by RIG-I Is Dependent on U-Core Length. Journal of Virology, 2015, 89, 11056-11068.	1.5	30
177	Femur-sparing pattern of abnormal fetal growth in pregnant women from New York City after maternal Zika virus infection. American Journal of Obstetrics and Gynecology, 2018, 219, 187.e1-187.e20.	0.7	30
178	RIG-I-like receptor activation drives type I IFN and antiviral signaling to limitÂHantaan orthohantavirus replication. PLoS Pathogens, 2020, 16, e1008483.	2.1	30
179	cGAS-mediated control of blood-stage malaria promotes Plasmodium-specific germinal center responses. JCI Insight, 2018, 3, .	2.3	30
180	Infectious Clones of Novel Lineage 1 and Lineage 2 West Nile Virus Strains WNV-TX02 and WNV-Madagascar. Journal of Virology, 2012, 86, 7704-7709.	1.5	29

#	Article	IF	CITATIONS
181	Rapid reversal of innate immune dysregulation in blood of patients and livers of humanized mice with HCV following DAA therapy. PLoS ONE, 2017, 12, e0186213.	1.1	29
182	STING is required for host defense against neuropathological West Nile virus infection. PLoS Pathogens, 2019, 15, e1007899.	2.1	29
183	Vpu-Deficient HIV Strains Stimulate Innate Immune Signaling Responses in Target Cells. Journal of Virology, 2012, 86, 8499-8506.	1.5	28
184	Flavivirus Nonstructural Protein NS5 Dysregulates HSP90 to Broadly Inhibit JAK/STAT Signaling. Cells, 2020, 9, 899.	1.8	28
185	Characterizing Viral Infection by Electron Microscopy. American Journal of Pathology, 2021, 191, 222-227.	1.9	27
186	SARS-CoV-2 Serologic Assays in Control and Unknown Populations Demonstrate the Necessity of Virus Neutralization Testing. Journal of Infectious Diseases, 2021, 223, 1120-1131.	1.9	27
187	Tissue specific expression of PKR protein kinase in aging B6D2F1 mice. Mechanisms of Ageing and Development, 2000, 114, 123-132.	2.2	26
188	Emerging complexity and new roles for the RIG-I-like receptors in innate antiviral immunity. Virologica Sinica, 2015, 30, 163-173.	1.2	26
189	Membrane Perturbation-Associated Ca ²⁺ Signaling and Incoming Genome Sensing Are Required for the Host Response to Low-Level Enveloped Virus Particle Entry. Journal of Virology, 2016, 90, 3018-3027.	1.5	26
190	African green monkeys avoid SIV disease progression by preventing intestinal dysfunction and maintaining mucosal barrier integrity. PLoS Pathogens, 2020, 16, e1008333.	2.1	26
191	SARS-CoV2 variant-specific replicating RNA vaccines protect from disease following challenge with heterologous variants of concern. ELife, 2022, 11, .	2.8	26
192	T cell receptor sequencing identifies prior SARS-CoV-2 infection and correlates with neutralizing antibodies and disease severity. JCI Insight, 2022, 7, .	2.3	26
193	P52rIPKRegulates the Molecular Cochaperone P58IPKTo Mediate Control of the RNA-Dependent Protein Kinase in Response to Cytoplasmic Stressâ€. Biochemistry, 2002, 41, 11878-11887.	1.2	25
194	Innate immune evasion by hepatitis C virus and West Nile virus. Cytokine and Growth Factor Reviews, 2007, 18, 535-544.	3.2	25
195	Interferon Regulatory Factor 5-Dependent Immune Responses in the Draining Lymph Node Protect against West Nile Virus Infection. Journal of Virology, 2014, 88, 11007-11021.	1.5	24
196	Interferon-stimulated genes: new platforms and computational approaches. Mammalian Genome, 2018, 29, 593-602.	1.0	24
197	CD22 Is Required for Protection against West Nile Virus Infection. Journal of Virology, 2013, 87, 3361-3375.	1.5	23
198	MAVS Expressed by Hematopoietic Cells Is Critical for Control of West Nile Virus Infection and Pathogenesis. Journal of Virology, 2016, 90, 7098-7108.	1.5	23

#	Article	IF	CITATIONS
199	Liver macrophage-associated inflammation correlates with SIV burden and is substantially reduced following cART. PLoS Pathogens, 2018, 14, e1006871.	2.1	23
200	Dynamics of innate immunity are key to chronic immune activation in AIDS. Current Opinion in HIV and AIDS, 2012, 7, 79-85.	1.5	22
201	An attenuating mutation in a neurovirulent Sindbis virus strain interacts with the IPS-1 signaling pathway in vivo. Virology, 2013, 435, 269-280.	1.1	22
202	IRF-3, IRF-7, and IPS-1 Promote Host Defense against Acute Human Metapneumovirus Infection in Neonatal Mice. American Journal of Pathology, 2014, 184, 1795-1806.	1.9	22
203	Cross-validation of SARS-CoV-2 responses in kidney organoids and clinical populations. JCI Insight, 2021, 6, .	2.3	21
204	GB Virus Type C NS5A Sequence Polymorphisms: Association with Interferon Susceptibility and Inhibition of PKR-Mediated eIF2α Phosphorylation. Journal of Interferon and Cytokine Research, 2005, 25, 261-270.	0.5	20
205	Evasion and disruption of innate immune signalling by hepatitis C and West Nile viruses. Cellular Microbiology, 2009, 11, 880-888.	1.1	20
206	RNA Helicase Signaling Is Critical for Type I Interferon Production and Protection against Rift Valley Fever Virus during Mucosal Challenge. Journal of Virology, 2013, 87, 4846-4860.	1.5	20
207	Selective Packaging in Murine Coronavirus Promotes Virulence by Limiting Type I Interferon Responses. MBio, 2018, 9, .	1.8	20
208	Recurrent bacterial vaginosis following metronidazole treatment is associated with microbiota richness at diagnosis. American Journal of Obstetrics and Gynecology, 2022, 226, 225.e1-225.e15.	0.7	20
209	Biological functions of DEAD/DEAH-box RNA helicases in health and disease. Nature Immunology, 2022, 23, 354-357.	7.0	20
210	Blockade of Virus Infection by Human CD4+ T Cells via a Cytokine Relay Network. Journal of Immunology, 2008, 180, 6923-6932.	0.4	19
211	Differential and Overlapping Immune Programs Regulated by IRF3 and IRF5 in Plasmacytoid Dendritic Cells. Journal of Immunology, 2018, 201, 3036-3050.	0.4	19
212	Regulation of interferon production and innate antiviral immunity through translational control of IRF-7. Cell Research, 2008, 18, 433-435.	5.7	18
213	Interleukin-15 response signature predicts RhCMV/SIV vaccine efficacy. PLoS Pathogens, 2021, 17, e1009278.	2.1	18
214	Systematic Profiling of Full-Length Ig and TCR Repertoire Diversity in Rhesus Macaque through Long Read Transcriptome Sequencing. Journal of Immunology, 2020, 204, 3434-3444.	0.4	18
215	Macrophage-associated wound healing contributes to African green monkey SIV pathogenesis control. Nature Communications, 2019, 10, 5101.	5.8	17
216	Cell type- and replication stage-specific influenza virus responses in vivo. PLoS Pathogens, 2020, 16, e1008760.	2.1	17

#	Article	IF	CITATIONS
217	Suppression of hepatitis B virus through therapeutic activation of RIG-I and IRF3 signaling in hepatocytes. IScience, 2021, 24, 101969.	1.9	17
218	Antiviral Potency Analysis and Functional Comparison of Consensus Interferon, Interferon-α2a and Pegylated Interferon-α2b against Hepatitis C virus Infection. Antiviral Therapy, 2008, 13, 851-862.	0.6	17
219	Immune Evasion Strategies Used by Zika Virus to Infect the Fetal Eye and Brain. Viral Immunology, 2020, 33, 22-37.	0.6	16
220	The herpesvirus accessory protein \hat{I}^3 134.5 facilitates viral replication by disabling mitochondrial translocation of RIG-I. PLoS Pathogens, 2021, 17, e1009446.	2.1	16
221	Protection of mice deficient in mature B cells from West Nile virus infection by passive and active immunization. PLoS Pathogens, 2017, 13, e1006743.	2.1	16
222	What Happens Inside Lentivirus or Influenza Virus Infected Cells: Insights into Regulation of Cellular and Viral Protein Synthesis. Methods, 1997, 11, 383-401.	1.9	15
223	Sterol-izing Innate Immunity. Immunity, 2013, 38, 3-5.	6.6	15
224	Identifying protective host gene expression signatures within the spleen during West Nile virus infection in the collaborative cross model. Genomics Data, 2016, 10, 114-117.	1.3	14
225	Strong T _H 1-biased CD4 T cell responses are associated with diminished SIV vaccine efficacy. Science Translational Medicine, 2019, 11, .	5.8	14
226	Engagement of monocytes, NK cells, and CD4+ Th1 cells by ALVAC-SIV vaccination results in a decreased risk of SIVmac251 vaginal acquisition. PLoS Pathogens, 2020, 16, e1008377.	2.1	14
227	Innate Immunity in Hepatitis C Virus Infection. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a036988.	2.9	14
228	Splenic macrophages are required for protective innate immunity against West Nile virus. PLoS ONE, 2018, 13, e0191690.	1.1	14
229	Immune Correlates of Protection From West Nile Virus Neuroinvasion and Disease. Journal of Infectious Diseases, 2019, 219, 1162-1171.	1.9	13
230	T cell response to intact SARS-CoV-2 includes coronavirus cross-reactive and variant-specific components. JCI Insight, 2022, 7, .	2.3	12
231	The Accelerating Pace of HCV Research: A Summary of the 15th International Symposium on Hepatitis C Virus and Related Viruses. Gastroenterology, 2009, 136, 9-16.	0.6	11
232	Interference with Virus Infection. Journal of Immunology, 2015, 195, 1909-1910.	0.4	11
233	Matrix metalloproteinase 28 is regulated by TRIF- and type I IFN-dependent signaling in macrophages. Innate Immunity, 2018, 24, 357-365.	1.1	11
234	Cell-type specificity and functional redundancy of RIG-I-like receptors in innate immune sensing of Coxsackievirus B3 and encephalomyocarditis virus. Virology, 2019, 528, 7-18.	1.1	11

#	Article	IF	CITATIONS
235	Dendritic cell-associated MAVS is required to control West Nile virus replication and ensuing humoral immune responses. PLoS ONE, 2019, 14, e0218928.	1.1	10
236	Immune predictors of mortality following RNA virus infection. Journal of Infectious Diseases, 2020, 221, 882-889.	1.9	10
237	Two new monoclonal antibodies for biochemical and flow cytometric analyses of human interferon regulatory factor-3 activation, turnover, and depletion. Methods, 2013, 59, 225-232.	1.9	9
238	Transcriptional profiles of WNV neurovirulence in a genetically diverse Collaborative Cross population. Genomics Data, 2016, 10, 137-140.	1.3	9
239	ZAPS electrifies RIG-I signaling. Nature Immunology, 2011, 12, 11-12.	7.0	8
240	MAVS Is Essential for Primary CD4 ⁺ T Cell Immunity but Not for Recall T Cell Responses following an Attenuated West Nile Virus Infection. Journal of Virology, 2017, 91, .	1.5	8
241	Extrinsic MAVS signaling is critical for Treg maintenance of Foxp3 expression following acute flavivirus infection. Scientific Reports, 2017, 7, 40720.	1.6	8
242	Hepatic IFN-Induced Protein with Tetratricopeptide Repeats Regulation of HCV Infection. Journal of Interferon and Cytokine Research, 2019, 39, 133-146.	0.5	8
243	Proteome-Wide Zika Virus CD4 T Cell Epitope and HLA Restriction Determination. ImmunoHorizons, 2020, 4, 444-453.	0.8	8
244	Expression of Human PKR Protein Kinase in Transgenic Mice. Journal of Interferon and Cytokine Research, 2002, 22, 329-334.	0.5	7
245	Pegylated Interferon and Ribavirin Promote Early Evolution of Nonstructural 5A Protein in Individuals with Hepatitis C Who Demonstrate a Response to Treatment. Journal of Infectious Diseases, 2009, 200, 866-876.	1.9	7
246	Pushing to a cure by harnessing innate immunity against hepatitis C virus. Antiviral Research, 2014, 108, 156-164.	1.9	7
247	Single-cell transcriptomic analyses of T cells in chronic HCV-infected patients dominated by DAA-induced interferon signaling changes. PLoS Pathogens, 2021, 17, e1009799.	2.1	7
248	Antiviral potency analysis and functional comparison of consensus interferon, interferon-alpha2a and pegylated interferon-alpha2b against hepatitis C virus infection. Antiviral Therapy, 2008, 13, 851-62.	0.6	7
249	Performance of anterior nares and tongue swabs for nucleic acid, Nucleocapsid, and Spike antigen testing for detecting SARS-CoV-2 against nasopharyngeal PCR and viral culture. International Journal of Infectious Diseases, 2022, 117, 287-294.	1.5	7
250	Antiviral Innate Immunity: Editorial Overview. Journal of Molecular Biology, 2014, 426, 1129-1132.	2.0	6
251	IRF5 regulates unique subset of genes in dendritic cells during West Nile virus infection. Journal of Leukocyte Biology, 2019, 105, 411-425.	1.5	6
252	Microglia in Memory Decline from Zika Virus and West Nile Virus Infection. Trends in Neurosciences, 2019, 42, 757-759.	4.2	5

#	Article	IF	CITATIONS
253	In vitro and in vivo characterization of a West Nile virus MAD78 infectious clone. Archives of Virology, 2014, 159, 3113-3118.	0.9	4
254	RNA-Seq in the Collaborative Cross. Methods in Molecular Biology, 2017, 1488, 251-263.	0.4	4
255	ZIKV can infect human term placentas in the absence of maternal factors. Communications Biology, 2022, 5, 243.	2.0	4
256	Unveiling viral enablers. Nature Biotechnology, 2008, 26, 1093-1094.	9.4	3
257	Systems Biology Analyses to Define Host Responses to HCV Infection and Therapy. Current Topics in Microbiology and Immunology, 2012, 363, 143-167.	0.7	3
258	Mitochondria and Antiviral Immunity. , 2016, , 187-212.		3
259	RNA PAMPs as Molecular Tools for Evaluating RIG-I Function in Innate Immunity. Methods in Molecular Biology, 2017, 1656, 119-129.	0.4	3
260	A Geroscience Approach to Preventing Pathologic Consequences of COVID-19. Journal of Interferon and Cytokine Research, 2020, 40, 433-437.	0.5	3
261	Liver Bacterial Dysbiosis With Non-Tuberculosis Mycobacteria Occurs in SIV-Infected Macaques and Persists During Antiretroviral Therapy. Frontiers in Immunology, 2021, 12, 793842.	2.2	3
262	Innate immune regulation in HIV latency models. Retrovirology, 2022, 19, .	0.9	3
263	Single-Cell–Based High-Throughput Ig and TCR Repertoire Sequencing Analysis in Rhesus Macaques. Journal of Immunology, 2022, 208, 762-771.	0.4	2
264	Antiviral and inflammatory crosstalk in the control of RNA virus infection. Future Virology, 2014, 9, 537-540.	0.9	1
265	Editorial overview: Antiviral strategies. Current Opinion in Virology, 2015, 12, v-vii.	2.6	1
266	Correlation of Regulatory T Cell Numbers with Disease Tolerance upon Virus Infection. ImmunoHorizons, 2021, 5, 157-169.	0.8	1
267	Structural insights into RNA recognition and activation by innate immune patternâ€recognition receptor RIGâ€I. FASEB Journal, 2012, 26, 943.3.	0.2	1
268	Inhibitor of κB kinase Ϊμ (ΙΚΚΪμ), STAT1, and IFIT2 proteins define novel innate immune effector pathway against West Nile virus infection Journal of Biological Chemistry, 2012, 287, 5182.	1.6	0
269	Recognizing Excellence in Peer Review. Journal of Interferon and Cytokine Research, 2018, 38, 583-583.	0.5	Ο
270	The Experts Speak: A New Feature in the JICR. Journal of Interferon and Cytokine Research, 2021, 41, 161-163.	0.5	0

#	Article	IF	CITATIONS
271	Regulation of Innate Immunity and Interferon Defenses by Hepatitis C Virus. , 2012, , 245-269.		Ο
272	Regulation of Innate Immunity by the Flaviviridae. , 0, , 317-333.		0
273	Doubleâ€stranded RNAs Attenuate Interferon Response via Parkinâ€mediated MAVS Ubiquitination. FASEB Journal, 2018, 32, lb145.	0.2	Ο
274	The role of innate immunity in chronic hepatitis C viral infection. Gastroenterology and Hepatology, 2007, 3, 683-4.	0.2	0
275	Title is missing!. , 2020, 16, e1008333.		0
276	Title is missing!. , 2020, 16, e1008333.		0
277	Title is missing!. , 2020, 16, e1008333.		0
278	Title is missing!. , 2020, 16, e1008333.		0