Hai-Yan Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5425508/publications.pdf Version: 2024-02-01

ΗΛΙ-ΥΛΝ ΧΙΕ

#	Article	IF	CITATIONS
1	Engineering Magnetosomes for Ferroptosis/Immunomodulation Synergism in Cancer. ACS Nano, 2019, 13, 5662-5673.	7.3	261
2	Responsive Exosome Nanoâ€bioconjugates for Synergistic Cancer Therapy. Angewandte Chemie - International Edition, 2020, 59, 2018-2022.	7.2	226
3	Biomimetic Immunoâ€Magnetosomes for Highâ€Performance Enrichment of Circulating Tumor Cells. Advanced Materials, 2016, 28, 7929-7935.	11.1	190
4	Living Yeast Cells as a Controllable Biosynthesizer for Fluorescent Quantum Dots. Advanced Functional Materials, 2009, 19, 2359-2364.	7.8	178
5	Molecularly Engineered Macrophageâ€Derived Exosomes with Inflammation Tropism and Intrinsic Heme Biosynthesis for Atherosclerosis Treatment. Angewandte Chemie - International Edition, 2020, 59, 4068-4074.	7.2	164
6	Colorimetric-Fluorescent-Magnetic Nanosphere-Based Multimodal Assay Platform for Salmonella Detection. Analytical Chemistry, 2019, 91, 1178-1184.	3.2	152
7	Biomimetic Magnetosomes as Versatile Artificial Antigen-Presenting Cells to Potentiate T-Cell-Based Anticancer Therapy. ACS Nano, 2017, 11, 10724-10732.	7.3	150
8	Cell-Targeting Multifunctional Nanospheres with both Fluorescence and Magnetism. Small, 2005, 1, 506-509.	5.2	142
9	Single-Virus Tracking: From Imaging Methodologies to Virological Applications. Chemical Reviews, 2020, 120, 1936-1979.	23.0	131
10	Stable Organic Photosensitizer Nanoparticles with Absorption Peak beyond 800 Nanometers and High Reactive Oxygen Species Yield for Multimodality Phototheranostics. ACS Nano, 2020, 14, 9917-9928.	7.3	101
11	Selfâ€Activatable Photoâ€Extracellular Vesicle for Synergistic Trimodal Anticancer Therapy. Advanced Materials, 2021, 33, e2005562.	11.1	100
12	Fluorescent/magnetic micro/nano-spheres based on quantum dots and/or magnetic nanoparticles: preparation, properties, and their applications in cancer studies. Nanoscale, 2016, 8, 12406-12429.	2.8	93
13	A Biocompatible Free Radical Nanogenerator with Realâ€Time Monitoring Capability for High Performance Sequential Hypoxic Tumor Therapy. Advanced Functional Materials, 2019, 29, 1903436.	7.8	83
14	Magnetic Nanoclusters Armed with Responsive PD-1 Antibody Synergistically Improved Adoptive T-Cell Therapy for Solid Tumors. ACS Nano, 2019, 13, 1469-1478.	7.3	71
15	Construction of a Biomimetic Magnetosome and Its Application as a SiRNA Carrier for Highâ€Performance Anticancer Therapy. Advanced Functional Materials, 2018, 28, 1703326.	7.8	69
16	Engineering Magnetosomes for High-Performance Cancer Vaccination. ACS Central Science, 2019, 5, 796-807.	5.3	66
17	Lectin-modified trifunctional nanobiosensors for mapping cell surface glycoconjugates. Biosensors and Bioelectronics, 2009, 24, 1311-1317.	5.3	61
18	Visual Recognition and Efficient Isolation of Apoptotic Cells with Fluorescent-Magnetic-Biotargeting Multifunctional Nanospheres. Clinical Chemistry, 2007, 53, 2177-2185.	1.5	60

HAI-YAN XIE

#	Article	IF	CITATIONS
19	Cell-Membrane-Based Biomimetic Systems with Bioorthogonal Functionalities. Accounts of Chemical Research, 2020, 53, 276-287.	7.6	59
20	A Mild and Reliable Method to Label Enveloped Virus with Quantum Dots by Copper-Free Click Chemistry. Analytical Chemistry, 2012, 84, 8364-8370.	3.2	58
21	Quantum Dot Based Biotracking and Biodetection. Analytical Chemistry, 2019, 91, 532-547.	3.2	58
22	A multicomponent recognition and separation system established via fluorescent, magnetic, dualencoded multifunctional bioprobes. Biomaterials, 2011, 32, 1177-1184.	5.7	57
23	Fluorescent quantum dot-labeled aptamer bioprobes specifically targeting mouse liver cancer cells. Talanta, 2010, 81, 505-509.	2.9	55
24	Preparation and Characterization of Overcoated II–VI Quantum Dots. Journal of Nanoscience and Nanotechnology, 2005, 5, 880-886.	0.9	53
25	A self-driven bioinspired nanovehicle by leukocyte membrane-hitchhiking for early detection and treatment of atherosclerosis. Biomaterials, 2020, 250, 119963.	5.7	52
26	Biomimetic Microfluidic System for Fast and Specific Detection of Circulating Tumor Cells. Analytical Chemistry, 2019, 91, 15726-15731.	3.2	46
27	MnCaCs-Biomineralized Oncolytic Virus for Bimodal Imaging-Guided and Synergistically Enhanced Anticancer Therapy. Nano Letters, 2019, 19, 8002-8009.	4.5	41
28	Fluorescent–magnetic dual-encoded nanospheres: a promising tool for fast-simultaneous-addressable high-throughput analysis. Nanotechnology, 2012, 23, 035602.	1.3	40
29	Enveloped Virus Labeling via Both Intrinsic Biosynthesis and Metabolic Incorporation of Phospholipids in Host Cells. Analytical Chemistry, 2013, 85, 5263-5270.	3.2	40
30	Antimonene with two-orders-of-magnitude improved stability for high-performance cancer theranostics. Chemical Science, 2019, 10, 4847-4853.	3.7	39
31	Green Mass Production of Pure Nanodrugs via an Ice-Template-Assisted Strategy. Nano Letters, 2019, 19, 658-665.	4.5	37
32	Viral Proteinâ€Pseudotyped and siRNAâ€Electroporated Extracellular Vesicles for Cancer Immunotherapy. Advanced Functional Materials, 2020, 30, 2006515.	7.8	37
33	Phytochemical Engineered Bacterial Outer Membrane Vesicles for Photodynamic Effects Promoted Immunotherapy. Nano Letters, 2022, 22, 4491-4500.	4.5	31
34	Sensitive single-color fluorescence "off–on―switch system for dsDNA detection based on quantum dots-ruthenium assembling dyads. Biosensors and Bioelectronics, 2014, 56, 51-57.	5.3	27
35	Responsive Exosome Nanoâ€bioconjugates for Synergistic Cancer Therapy. Angewandte Chemie, 2020, 132, 2034-2038.	1.6	27
36	Smart Tumorâ€Cellâ€Derived Microparticles Provide Onâ€Demand Photosensitizer Synthesis and Hypoxia Relief for Photodynamic Therapy. Angewandte Chemie - International Edition, 2021, 60, 25365-25371.	7.2	26

HAI-YAN XIE

#	Article	IF	CITATIONS
37	Progress on the labeling and single-particle tracking technologies of viruses. Analyst, The, 2014, 139, 3336-3346.	1.7	25
38	Integrating Two Efficient and Specific Bioorthogonal Ligation Reactions with Natural Metabolic Incorporation in One Cell for Virus Dual Labeling. Analytical Chemistry, 2017, 89, 11620-11627.	3.2	23
39	A fast and biocompatible living virus labeling method based on sialic acid-phenylboronic acid recognition system. Analytical and Bioanalytical Chemistry, 2014, 406, 2687-2693.	1.9	22
40	Amplifying Nanoparticle Targeting Performance to Tumor via Diels–Alder Cycloaddition. Advanced Functional Materials, 2018, 28, 1707596.	7.8	22
41	Coordinating bioorthogonal reactions with two tumor-microenvironment-responsive nanovehicles for spatiotemporally controlled prodrug activation. Chemical Science, 2020, 11, 2155-2160.	3.7	22
42	A new stable and reliable method for labeling nucleic acids of fully replicative viruses. Chemical Communications, 2012, 48, 2424.	2.2	18
43	Multifunctional Cellular Beacons with in Situ Synthesized Quantum Dots Make Pathogen Detectable with the Naked Eye. Analytical Chemistry, 2019, 91, 7280-7287.	3.2	16
44	Molecularly Engineered Macrophageâ€Derived Exosomes with Inflammation Tropism and Intrinsic Heme Biosynthesis for Atherosclerosis Treatment. Angewandte Chemie, 2020, 132, 4097-4103.	1.6	14
45	Two-step tumor-targeting therapy <i>via</i> integrating metabolic lipid-engineering with <i>in situ</i> click chemistry. Biomaterials Science, 2020, 8, 2283-2288.	2.6	12
46	Labeling and Single-Particle-Tracking-Based Entry Mechanism Study of Vaccinia Virus from the Tiantan Strain. Analytical Chemistry, 2018, 90, 3452-3459.	3.2	9
47	Membrane vesicles nanotheranostic systems: sources, engineering methods, and challenges. Biomedical Materials (Bristol), 2021, 16, 022009.	1.7	8
48	High sensitive detection method for protein by combining the magnetic separation with cation exchange based signal amplification. Talanta, 2017, 168, 91-99.	2.9	6
49	Immunomodulatory hybrid bio-nanovesicle for self-promoted photodynamic therapy. Nano Research, 2022, 15, 4233-4242.	5.8	6
50	Ru(<scp>ii</scp>) polypyridyl complex-incorporated and folate-conjugated vehicle for cancer cell imaging and photoinduced inactivation. Analyst, The, 2016, 141, 2948-2954.	1.7	5
51	Engineering oncolytic vaccinia virus with functional peptides through mild and universal strategy. Analytical and Bioanalytical Chemistry, 2019, 411, 925-933.	1.9	5
52	Natural killer cell-derived extracellular vesicle significantly enhanced adoptive T cell therapy against solid tumors via versatilely immunomodulatory coordination. Science China Chemistry, 2021, 64, 1999-2009.	4.2	4
53	Phytochemical natural killer cells reprogram tumor microenvironment for potent immunotherapy of solid tumors. Biomaterials, 2022, 287, 121635.	5.7	3
54	Smart Tumorâ€Cellâ€Derived Microparticles Provide Onâ€Demand Photosensitizer Synthesis and Hypoxia Relief for Photodynamic Therapy. Angewandte Chemie, 0, , .	1.6	2