
cyril Rousseau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/542537/publications.pdf Version: 2024-02-01

CVDIL ROUSSEALL

#	Article	IF	CITATIONS
1	Artificial enzymes, "Chemzymesâ€ŧ current state and perspectives. Applied Microbiology and Biotechnology, 2008, 81, 1-11.	1.7	113
2	Remarkable Supramolecular Catalysis of Glycoside Hydrolysis by a Cyclodextrin Cyanohydrin. Journal of the American Chemical Society, 2005, 127, 3238-3239.	6.6	110
3	Unconventional media and technologies for starch etherification and esterification. Green Chemistry, 2018, 20, 1152-1168.	4.6	75
4	Supramolecular Oxidation of Anilines Using Hydrogen Peroxide as Stoichiometric Oxidant. Journal of the American Chemical Society, 2005, 127, 17578-17579.	6.6	62
5	Tosylated glycerol carbonate, a versatile bis-electrophile to access new functionalized glycidol derivatives. Tetrahedron, 2009, 65, 8571-8581.	1.0	57
6	An ambient-temperature aqueous synthesis of zirconium-based metal–organic frameworks. Green Chemistry, 2018, 20, 5292-5298.	4.6	54
7	First polymer "ruthenium-cyclopentadienyl―complex as potential anticancer agent. Journal of Inorganic Biochemistry, 2013, 127, 79-81.	1.5	48
8	Cyclodextrins containing an acetone bridge. Synthesis and study as epoxidation catalysts. Organic and Biomolecular Chemistry, 2004, 2, 3476.	1.5	46
9	An artificial enzyme that catalyzes hydrolysis of aryl glycosides. Tetrahedron Letters, 2004, 45, 8709-8711.	0.7	44
10	Access to new carbohydrate-functionalized polylactides via organocatalyzed ring-opening polymerization. Polymer, 2011, 52, 5018-5026.	1.8	42
11	Greener Paal–Knorr Pyrrole Synthesis by Mechanical Activation. European Journal of Organic Chemistry, 2016, 2016, 31-35.	1.2	41
12	Artificial Glycosyl Phosphorylases. Chemistry - A European Journal, 2005, 11, 5094-5101.	1.7	40
13	1,2-Glycerol Carbonate: A Versatile Renewable Synthon. Letters in Organic Chemistry, 2006, 3, 744-748.	0.2	40
14	Artificial Epoxidase II. Synthesis of Cyclodextrin Ketoesters and Epoxidation of Alkenes. European Journal of Organic Chemistry, 2005, 2005, 2734-2739.	1.2	32
15	Selective Discrimination of Cyclodextrin Diols Using Cyclic Sulfates. Organic Letters, 2009, 11, 1983-1985.	2.4	29
16	Ringâ€opening polymerization of lactones using binaphthylâ€diyl hydrogen phosphate as organocatalyst and resulting monosaccharide functionalization of polylactones. Journal of Polymer Science Part A, 2013, 51, 2279-2287.	2.5	29
17	Polymer "ruthenium-cyclopentadienyl―conjugates - New emerging anti-cancer drugs. European Journal of Medicinal Chemistry, 2019, 168, 373-384.	2.6	26
18	Synthesis of bergenin-related natural products by way of an intramolecular C-glycosylation reaction. Tetrahedron: Asymmetry, 2000, 11, 409-412.	1.8	23

CYRIL ROUSSEAU

#	Article	IF	CITATIONS
19	Synthesis of benzo[5,6]cyclohepta[b]indol-6-one derivatives. Tetrahedron, 1999, 55, 4341-4352.	1.0	19
20	Stereodirected Synthesis of Aryl α-C-Glycosides from 2-O-Arylsilyl-glucopyranosides. Organic Letters, 2003, 5, 3763-3766.	2.4	18
21	Synthesis and biological evaluation of potent glycosidase inhibitors: 4-deoxy-4,4-difluoroisofagomine and analogues. Tetrahedron, 2009, 65, 3717-3727.	1.0	17
22	Ring opening polymerization of ε-caprolactone in the presence of wet β-cyclodextrin: effect of the operative pressure and of water molecules in the β-cyclodextrin cavity. RSC Advances, 2016, 6, 90290-90299.	1.7	17
23	Intramolecular C-glycosylation of 2-O-benzylated pentenyl mannopyranosides: remarkable 1,2-trans stereoselectivity. Tetrahedron Letters, 2003, 44, 8971-8974.	0.7	14
24	Direct Experimental Evidence for the High Chemical Reactivity of α―and βâ€Xylopyranosides Adopting a ^{2,5} <i>B</i> Conformation in Glycosyl Transfer. Chemistry - A European Journal, 2011, 17, 7345-7356.	1.7	14
25	Access to Pyrrole Derivatives in Water with the Assistance of Methylated Cyclodextrins. European Journal of Organic Chemistry, 2014, 2014, 4356-4361.	1.2	13
26	Cyclodextrins: a new and effective class of co-modulators for aqueous zirconium-MOF syntheses. CrystEngComm, 2021, 23, 2764-2772.	1.3	11
27	Modular access to heterocycles: methyl 3-aminobenzo[b]thiophene-2-carboxylate–thiourea linkage or pyrimidine-4-one-2-thione formation. Monatshefte Für Chemie, 2009, 140, 339-348.	0.9	7
28	Oleic Acid Based Cyclodextrins for the Development of New Hydrosoluble Amphiphilic Compounds. European Journal of Organic Chemistry, 2019, 2019, 1236-1241.	1.2	6
29	Synthesis of 2-Hydroxydodecyl Starch Ethers: Importance of the Purification Process. Industrial & Engineering Chemistry Research, 2019, 58, 2437-2444.	1.8	5
30	Cyclodextrins Initiated Ring-Opening Polymerization of Lactide Using 4-Dimethylaminopyridine (DMAP) as Catalyst: Study of DMAP/β-CD Inclusion Complex and Access to New Structures. Molecules, 2022, 27, 1083.	1.7	5
31	Cyclodextrins as Porous Material for Catalysis. , 2016, , 15-42.		4
32	Highly Waterâ€Soluble Amphiphilic Cyclodextrins Bearing Branched and Cyclic Oleic Grafts. European Journal of Organic Chemistry, 2019, 2019, 4863-4868.	1.2	4
33	Aqueous zirconiumâ€MOF syntheses assisted by αâ€cyclodextrin: towards deeper understanding of the beneficial role of cyclodextrin. European Journal of Inorganic Chemistry, 0, , .	1.0	3
34	Cyclodextrins Containing an Acetone Bridge. Synthesis and Study as Epoxidation Catalysts ChemInform, 2005, 36, no.	0.1	0