
Yun-Bo Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5425141/publications.pdf Version: 2024-02-01

YUN-RO SHL

#	Article	IF	CITATIONS
1	Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nature Immunology, 2013, 14, 500-508.	14.5	732
2	Identification and Characterization of a Membrane Protein (y+L Amino Acid Transporter-1) That Associates with 4F2hc to Encode the Amino Acid Transport Activity y+L. Journal of Biological Chemistry, 1998, 273, 32437-32445.	3.4	304
3	Distinct Functions Are Implicated for the GATA-4, -5, and -6 Transcription Factors in the Regulation of Intestine Epithelial Cell Differentiation. Molecular and Cellular Biology, 1998, 18, 2901-2911.	2.3	214
4	Molecular and developmental analyses of thyroid hormone receptor function in Xenopus laevis, the African clawed frog. General and Comparative Endocrinology, 2006, 145, 1-19.	1.8	197
5	Transcriptional Activation of the Matrix Metalloproteinase Gene stromelysin-3 Coincides with Thyroid Hormone-Induced Cell Death during Frog Metamorphosis. Developmental Biology, 1995, 167, 252-262.	2.0	166
6	Tadpole competence and tissue-specific temporal regulation of amphibian metamorphosis: Roles of thyroid hormone and its receptors. BioEssays, 1996, 18, 391-399.	2.5	165
7	7 Biphasic Intestinal Development in Amphibians: Embryogenesis and Remodeling during Metamorphosis. Current Topics in Developmental Biology, 1996, 32, 205-235.	2.2	160
8	Coordinated Regulation of and Transcriptional Activation by Xenopus Thyroid Hormone and Retinoid X Receptors. Journal of Biological Chemistry, 1995, 270, 18479-18483.	3.4	147
9	Thyroid Hormone-dependent Gene Expression Program for Xenopus Neural Development. Journal of Biological Chemistry, 1997, 272, 8179-8188.	3.4	123
10	A Dominant-Negative Thyroid Hormone Receptor Blocks Amphibian Metamorphosis by Retaining Corepressors at Target Genes. Molecular and Cellular Biology, 2003, 23, 6750-6758.	2.3	122
11	Transgenic Analysis Reveals that Thyroid Hormone Receptor Is Sufficient To Mediate the Thyroid Hormone Signal in Frog Metamorphosis. Molecular and Cellular Biology, 2004, 24, 9026-9037.	2.3	122
12	Recruitment of N-CoR/SMRT-TBLR1 Corepressor Complex by Unliganded Thyroid Hormone Receptor for Gene Repression during Frog Development. Molecular and Cellular Biology, 2004, 24, 3337-3346.	2.3	121
13	Dual functions of thyroid hormone receptors during Xenopus development. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2000, 126, 199-211.	1.6	118
14	Targeted gene disruption in Xenopus laevis using CRISPR/Cas9. Cell and Bioscience, 2015, 5, 15.	4.8	115
15	Cloning and characterization of the ribosomal protein L8 gene from Xenopus laevis. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1994, 1217, 227-228.	2.4	113
16	Thyroid Hormone-Dependent Regulation of the Intestinal Fatty Acid-Binding Protein Gene during Amphibian Metamorphosis. Developmental Biology, 1994, 161, 48-58.	2.0	111
17	Xenopus sonic hedgehog as a potential morphogen during embryogenesis and thyroid hormone-dependent metamorphosis. Nucleic Acids Research, 1995, 23, 2555-2562.	14.5	110
18	Requirement for Matrix Metalloproteinase Stromelysin-3 in Cell Migration and Apoptosis during Tissue Remodeling in <i>Xenopus laevis</i> . Journal of Cell Biology, 2000, 150, 1177-1188.	5.2	110

#	Article	IF	CITATIONS
19	The Xenoestrogen Bisphenol A Inhibits Postembryonic Vertebrate Development by Antagonizing Gene Regulation by Thyroid Hormone. Endocrinology, 2009, 150, 2964-2973.	2.8	107
20	Nuclear Receptor Corepressor Recruitment by Unliganded Thyroid Hormone Receptor in Gene Repression during Xenopus laevis Development. Molecular and Cellular Biology, 2002, 22, 8527-8538.	2.3	91
21	Apoptosis in amphibian organs during metamorphosis. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 350-364.	4.9	89
22	Dual Functions of Thyroid Hormone Receptors in Vertebrate Development: The Roles of Histone-Modifying Cofactor Complexes. Thyroid, 2009, 19, 987-999.	4.5	88
23	Mechanisms of thyroid hormone receptor action during development: Lessons from amphibian studies. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3882-3892.	2.4	88
24	Developmental Regulation and Function of Thyroid Hormone Receptors and 9-cis Retinoic Acid Receptors during Xenopus tropicalis Metamorphosis. Endocrinology, 2008, 149, 5610-5618.	2.8	87
25	Multiple N-CoR Complexes Contain Distinct Histone Deacetylases. Journal of Biological Chemistry, 2001, 276, 8807-8811.	3.4	86
26	Pairing morphology with gene expression in thyroid hormone-induced intestinal remodeling and identification of a core set of TH-induced genes across tadpole tissues. Developmental Biology, 2007, 303, 576-590.	2.0	86
27	Identification of Direct Thyroid Hormone Response Genes Reveals the Earliest Gene Regulation Programs during Frog Metamorphosis. Journal of Biological Chemistry, 2009, 284, 34167-34178.	3.4	83
28	The Catalytic Subunit of the System L1 Amino Acid Transporter (Slc7a5) Facilitates Nutrient Signalling in Mouse Skeletal Muscle. PLoS ONE, 2014, 9, e89547.	2.5	83
29	Unliganded Thyroid Hormone Receptor α Controls Developmental Timing in Xenopus tropicalis. Endocrinology, 2015, 156, 721-734.	2.8	81
30	Thyroid hormone regulation of apoptotic tissue remodeling: Implications from molecular analysis of amphibian metamorphosis. Progress in Molecular Biology and Translational Science, 2000, 65, 53-100.	1.9	78
31	Targeting of N-CoR and histone deacetylase 3 by the oncoprotein v-ErbA yields a chromatin infrastructure-dependent transcriptional repression pathway. EMBO Journal, 2000, 19, 4074-4090.	7.8	71
32	Spatial and temporal regulation of collagenases-3, -4, and stromelysin -3 implicates distinct functions in apoptosis and tissue remodeling during frog metamorphosis. Cell Research, 1999, 9, 91-105.	12.0	69
33	Origin of the adult intestinal stem cells induced by thyroid hormone in <i>Xenopus laevis</i> . FASEB Journal, 2009, 23, 2568-2575.	0.5	67
34	Molecular biology of amphibian metamorphosis. Trends in Endocrinology and Metabolism, 1994, 5, 14-20.	7.1	65
35	Chromatin Disruption and Histone Acetylation in Regulation of the Human Immunodeficiency Virus Type 1 Long Terminal Repeat by Thyroid Hormone Receptor. Molecular and Cellular Biology, 2002, 22, 4043-4052.	2.3	65
36	Coactivator Recruitment Is Essential for Liganded Thyroid Hormone Receptor To Initiate Amphibian Metamorphosis. Molecular and Cellular Biology, 2005, 25, 5712-5724.	2.3	65

#	Article	IF	CITATIONS
37	Functional Analysis of the SIN3-Histone Deacetylase RPD3-RbAp48-Histone H4 Connection in the <i>Xenopus</i> Oocyte. Molecular and Cellular Biology, 1999, 19, 5847-5860.	2.3	64
38	Novel double promoter approach for identification of transgenic animals: A tool for in vivo analysis of gene function and development of geneâ€based therapies. Molecular Reproduction and Development, 2002, 62, 470-476.	2.0	63
39	Thyroid hormone-induced expression of Sonic hedgehog correlates with adult epithelial development during remodeling of the Xenopus stomach and intestine. Differentiation, 2001, 69, 27-37.	1.9	62
40	Studies on Xenopus laevis intestine reveal biological pathways underlying vertebrate gut adaptation from embryo to adult. Genome Biology, 2010, 11, R55.	9.6	61
41	Transient expression of stromelysin-3 mRNA in the amphibian small intestine during metamorphosis. Cell and Tissue Research, 1996, 283, 325-329.	2.9	60
42	Thyroid Hormone Induces Apoptosis in Primary Cell Cultures of Tadpole Intestine: Cell Type Specificity and Effects of Extracellular Matrix. Journal of Cell Biology, 1997, 139, 1533-1543.	5.2	60
43	Anteroposterior Gradient of Epithelial Transformation during Amphibian Intestinal Remodeling: Immunohistochemical Detection of Intestinal Fatty Acid-Binding Protein. Developmental Biology, 1997, 192, 149-161.	2.0	60
44	Evolutionary insights into postembryonic development of adult intestinal stem cells. Cell and Bioscience, 2011, 1, 37.	4.8	60
45	A Causative Role of Stromelysin-3 in Extracellular Matrix Remodeling and Epithelial Apoptosis during Intestinal Metamorphosis in Xenopus laevis. Journal of Biological Chemistry, 2005, 280, 27856-27865.	3.4	58
46	The development of the adult intestinal stem cells: Insights from studies on thyroid hormone-dependent amphibian metamorphosis. Cell and Bioscience, 2011, 1, 30.	4.8	57
47	Dual function model revised by thyroid hormone receptor alpha knockout frogs. General and Comparative Endocrinology, 2018, 265, 214-218.	1.8	57
48	A role of unliganded thyroid hormone receptor in postembryonic development in Xenopus laevis. Mechanisms of Development, 2007, 124, 476-488.	1.7	56
49	Epithelial-Connective Tissue Interactions Induced by Thyroid Hormone Receptor Are Essential for Adult Stem Cell Development in the <i>Xenopus laevis</i> Intestine. Stem Cells, 2011, 29, 154-161.	3.2	56
50	Regulation of growth rate and developmental timing by <i>Xenopus</i> thyroid hormone receptor α. Development Growth and Differentiation, 2016, 58, 106-115.	1.5	55
51	Multiview confocal super-resolution microscopy. Nature, 2021, 600, 279-284.	27.8	55
52	Tissue- and Gene-specific Recruitment of Steroid Receptor Coactivator-3 by Thyroid Hormone Receptor during Development. Journal of Biological Chemistry, 2005, 280, 27165-27172.	3.4	54
53	An Essential and Evolutionarily Conserved Role of Protein Arginine Methyltransferase 1 for Adult Intestinal Stem Cells During Postembryonic Development. Stem Cells, 2010, 28, 2073-2083.	3.2	54
54	Thyroid Hormone Receptor α Controls Developmental Timing and Regulates the Rate and Coordination of Tissue-Specific Metamorphosis in Xenopus tropicalis. Endocrinology, 2017, 158, 1985-1998.	2.8	54

#	Article	IF	CITATIONS
55	Amphibian metamorphosis as a model for studying endocrine disruption on vertebrate development: Effect of bisphenol A on thyroid hormone action. General and Comparative Endocrinology, 2010, 168, 181-189.	1.8	53
56	Thyroid hormone receptor actions on transcription in amphibia: The roles of histone modification and chromatin disruption. Cell and Bioscience, 2012, 2, 42.	4.8	53
57	Thyroid hormone regulation of apoptotic tissue remodeling during anuran metamorphosis. Cell Research, 2001, 11, 245-252.	12.0	52
58	SRC-p300 Coactivator Complex Is Required for Thyroid Hormone-induced Amphibian Metamorphosis. Journal of Biological Chemistry, 2007, 282, 7472-7481.	3.4	50
59	Gene-specific Changes in Promoter Occupancy by Thyroid Hormone Receptor during Frog Metamorphosis. Journal of Biological Chemistry, 2005, 280, 41222-41228.	3.4	48
60	Novel Functions of Protein Arginine Methyltransferase 1 in Thyroid Hormone Receptor-Mediated Transcription and in the Regulation of Metamorphic Rate in <i>Xenopus laevis</i> . Molecular and Cellular Biology, 2009, 29, 745-757.	2.3	48
61	Global expression profiling reveals genetic programs underlying the developmental divergence between mouse and human embryogenesis. BMC Genomics, 2013, 14, 568.	2.8	47
62	Differential regulation of three thyroid hormoneâ€responsive matrix metalloproteinase genes implicates distinct functions during frog embryogenesis. FASEB Journal, 2000, 14, 503-510.	0.5	45
63	Gene expression atlas for human embryogenesis. FASEB Journal, 2010, 24, 3341-3350.	0.5	45
64	Evidence for a cooperative role of gelatinase A and membrane type-1 matrix metalloproteinase during Xenopus laevis development. Mechanisms of Development, 2007, 124, 11-22.	1.7	44
65	Liganded Thyroid Hormone Receptor Induces Nucleosome Removal and Histone Modifications to Activate Transcription during Larval Intestinal Cell Death and Adult Stem Cell Development. Endocrinology, 2012, 153, 961-972.	2.8	44
66	Fusion Protein of Retinoic Acid Receptor α with Promyelocytic Leukemia Protein or Promyelocytic Leukemia Zinc Finger Protein Recruits N-CoR-TBLR1 Corepressor Complex to Repress Transcription in Vivo. Journal of Biological Chemistry, 2003, 278, 30788-30795.	3.4	43
67	Spatial and temporal expression profiles suggest the involvement of gelatinase A and membrane type 1 matrix metalloproteinase in amphibian metamorphosis. Cell and Tissue Research, 2006, 324, 105-116.	2.9	43
68	Nuclear Factor I as a Potential Regulator during Postembryonic Organ Development. Journal of Biological Chemistry, 1996, 271, 6273-6282.	3.4	42
69	Thyroid hormone-induced cell-cell interactions are required for the development of adult intestinal stem cells. Cell and Bioscience, 2013, 3, 18.	4.8	42
70	Unliganded Thyroid Hormone Receptor Regulates Metamorphic Timing via the Recruitment of Histone Deacetylase Complexes. Current Topics in Developmental Biology, 2013, 105, 275-297.	2.2	42
71	Expression Profiling of Intestinal Tissues Implicates Tissue-Specific Genes and Pathways Essential for Thyroid Hormone-Induced Adult Stem Cell Development. Endocrinology, 2013, 154, 4396-4407.	2.8	42
72	Regulation of extracellular matrix remodeling and cell fate determination by matrix metalloproteinase stromelysin-3 during thyroid hormone-dependent post-embryonic development. , 2007, 116, 391-400.		41

#	Article	IF	CITATIONS
73	Tissue-dependent developmental expression of a cytosolic thyroid hormone protein gene inXenopus: Its role in the regulation of amphibian metamorphosis. FEBS Letters, 1994, 355, 61-64.	2.8	40
74	Histone H3K79 methyltransferase Dot1L is directly activated by thyroid hormone receptor during Xenopus metamorphosis. Cell and Bioscience, 2012, 2, 25.	4.8	39
75	The matrix metalloproteinase stromelysin-3 cleaves laminin receptor at two distinct sites between the transmembrane domain and laminin binding sequence within the extracellular domain. Cell Research, 2005, 15, 150-159.	12.0	38
76	Regulation of adult intestinal epithelial stem cell development by thyroid hormone during <i>Xenopus laevis</i> metamorphosis. Developmental Dynamics, 2007, 236, 3358-3368.	1.8	37
77	Thyroid Hormone Regulation of Adult Intestinal Stem Cell Development: Mechanisms and Evolutionary Conservations. International Journal of Biological Sciences, 2012, 8, 1217-1224.	6.4	36
78	Transcriptional Regulation of the Xenopus laevis Stromelysin-3 Gene by Thyroid Hormone Is Mediated by a DNA Element in the First Intron*. Journal of Biological Chemistry, 2006, 281, 16870-16878.	3.4	35
79	Spatio-Temporal Expression Profile of Stem Cell-Associated Gene LGR5 in the Intestine during Thyroid Hormone-Dependent Metamorphosis in Xenopus laevis. PLoS ONE, 2010, 5, e13605.	2.5	35
80	Molecular and cytological analyses reveal distinct transformations of intestinal epithelial cells during Xenopus metamorphosis. Cell and Bioscience, 2015, 5, 74.	4.8	34
81	Overexpression of matrix metalloproteinases leads to lethality in transgenicXenopus laevis: Implications for tissue-dependent functions of matrix metalloproteinases during late embryonic development. Developmental Dynamics, 2001, 221, 37-47.	1.8	33
82	Molecular and genetic studies suggest that thyroid hormone receptor is both necessary and sufficient to mediate the developmental effects of thyroid hormone. General and Comparative Endocrinology, 2010, 168, 174-180.	1.8	33
83	Thyroid Hormone-Regulated Early and Late Genes during Amphibian Metamorphosis. , 1996, , 505-538.		32
84	Cyclosporin A but not FK506 inhibits thyroid hormoneâ€induced apoptosis in tadpole intestinal epithelium. FASEB Journal, 1997, 11, 559-565.	0.5	32
85	Autoactivation ofXenopus thyroid hormone receptor β genes correlates with larval epithelial apoptosis and adult cell proliferation. Journal of Biomedical Science, 1997, 4, 9-18.	7.0	32
86	Distinct expression profiles of transcriptional coactivators for thyroid hormone receptors during Xenopus laevis metamorphosis. Cell Research, 2003, 13, 459-464.	12.0	32
87	Molecular mechanisms for thyroid hormone-induced remodeling in the amphibian digestive tract: A model for studying organ regeneration. Development Growth and Differentiation, 2005, 47, 601-607.	1.5	31
88	Participation of Brahma-Related Gene 1 (BRG1)-Associated Factor 57 and BRG1-Containing Chromatin Remodeling Complexes in Thyroid Hormone-Dependent Gene Activation during Vertebrate Development. Molecular Endocrinology, 2008, 22, 1065-1077.	3.7	30
89	Thyroid hormone receptor beta is critical for intestinal remodeling during Xenopus tropicalis metamorphosis. Cell and Bioscience, 2020, 10, 46.	4.8	30
90	Complex regulation of thyroid hormone action: multiple opportunities for pharmacological intervention. , 2002, 94, 235-251.		29

#	Article	IF	CITATIONS
91	Contrasting Effects of Two Alternative Splicing Forms of Coactivator-Associated Arginine Methyltransferase 1 on Thyroid Hormone Receptor-Mediated Transcription in Xenopus laevis. Molecular Endocrinology, 2007, 21, 1082-1094.	3.7	29
92	Thyroid hormone–upâ€regulated hedgehog interacting protein is involved in larvalâ€toâ€adult intestinal remodeling by regulating sonic hedgehog signaling pathway in <i>Xenopus laevis</i> . Developmental Dynamics, 2008, 237, 3006-3015.	1.8	29
93	Cytological and Morphological Analyses Reveal Distinct Features of Intestinal Development during Xenopus tropicalis Metamorphosis. PLoS ONE, 2012, 7, e47407.	2.5	29
94	Organ-Specific Requirements for Thyroid Hormone Receptor Ensure Temporal Coordination of Tissue-Specific Transformations and Completion of <i>Xenopus</i> Metamorphosis. Thyroid, 2020, 30, 300-313.	4.5	29
95	Temporal and spatial regulation of a putative transcriptional repressor implicates it as playing a role in thyroid hormone-dependent organ transformation. , 1997, 20, 329-337.		28
96	Transcription from the Thyroid Hormone-dependent Promoter of the Xenopus laevis Thyroid Hormone Receptor βA Gene Requires a Novel Upstream Element and the Initiator, but Not a TATA Box. Journal of Biological Chemistry, 1998, 273, 14186-14193.	3.4	28
97	Genome-wide identification of Xenopus matrix metalloproteinases: conservation and unique duplications in amphibians. BMC Genomics, 2009, 10, 81.	2.8	28
98	Genome-wide identification of thyroid hormone receptor targets in the remodeling intestine during Xenopus tropicalis metamorphosis. Scientific Reports, 2017, 7, 6414.	3.3	28
99	Involvement of histone deacetylase at two distinct steps in gene regulation during intestinal development inXenopus laevis. Developmental Dynamics, 2001, 222, 280-291.	1.8	27
100	An essential role of histone deacetylases in postembryonic organ transformations in Xenopus laevis. International Journal of Molecular Medicine, 2001, 8, 595-601.	4.0	27
101	Epigenetic regulation of thyroid hormone-induced adult intestinal stem cell development during anuran metamorphosis. Cell and Bioscience, 2014, 4, 73.	4.8	27
102	Thyroid hormone regulation of a transcriptional coactivator inXenopus laevis: Implication for a role in postembryonic tissue remodeling. Developmental Dynamics, 2002, 223, 526-535.	1.8	26
103	Differential Regulation of Cell Type-specific Apoptosis by Stromelysin-3. Journal of Biological Chemistry, 2009, 284, 18545-18556.	3.4	26
104	Wnt regulates amino acid transporter <i>Slc7a5</i> and so constrains the integrated stress response in mouse embryos. EMBO Reports, 2020, 21, e48469.	4.5	26
105	Histone methyltransferase Dot1L plays a role in postembryonic development in <i>Xenopus tropicalis</i> . FASEB Journal, 2015, 29, 385-393.	0.5	25
106	Thyroid Hormone-Induced Activation of Notch Signaling is Required for Adult Intestinal Stem Cell Development During <i>Xenopus Laevis</i> Metamorphosis. Stem Cells, 2017, 35, 1028-1039.	3.2	25
107	A unique role of thyroid hormone receptor \hat{I}^2 in regulating notochord resorption during Xenopus metamorphosis. General and Comparative Endocrinology, 2019, 277, 66-72.	1.8	25
108	Thyroid hormone receptors: Mechanisms of transcriptional regulation and roles during frog development. Journal of Biomedical Science, 1996, 3, 307-318.	7.0	24

#	Article	IF	CITATIONS
109	Spatio-temporal regulation and cleavage by matrix metalloproteinase stromelysin-3 implicate a role for laminin receptor in intestinal remodeling duringXenopus laevis metamorphosis. Developmental Dynamics, 2005, 234, 190-200.	1.8	24
110	Thyroid Hormone Activates Protein Arginine Methyltransferase 1 Expression by Directly Inducing c-Myc Transcription during Xenopus Intestinal Stem Cell Development. Journal of Biological Chemistry, 2012, 287, 10039-10050.	3.4	24
111	Roles of Matrix Metalloproteinases and ECM Remodeling during Thyroid Hormone-Dependent Intestinal Metamorphosis in <i>Xenopus laevis</i> . Organogenesis, 2007, 3, 14-19.	1.2	23
112	Thyroid hormone regulation of stem cell development during intestinal remodeling. Molecular and Cellular Endocrinology, 2008, 288, 71-78.	3.2	23
113	Global Gene Expression during the Human Organogenesis: From Transcription Profiles to Function Predictions. International Journal of Biological Sciences, 2011, 7, 1068-1076.	6.4	22
114	Thyroid hormoneâ€induced sonic hedgehog signal upâ€regulates its own pathway in a paracrine manner in the <i>Xenopus laevis</i> intestine during metamorphosis. Developmental Dynamics, 2012, 241, 403-414.	1.8	22
115	Role of ECM Remodeling in Thyroid Hormoneâ€Đependent Apoptosis during Anuran Metamorphosis. Annals of the New York Academy of Sciences, 2000, 926, 180-191.	3.8	21
116	Analysis of Thyroid Hormone Receptor α-Knockout Tadpoles Reveals That the Activation of Cell Cycle Program Is Involved in Thyroid Hormone-Induced Larval Epithelial Cell Death and Adult Intestinal Stem Cell Development During <i>Xenopus tropicalis</i> Metamorphosis. Thyroid, 2021, 31, 128-142.	4.5	21
117	Temporal and spatial expression of an intestinal Na+/PO43â^ cotransporter correlates with epithelial transformation during thyroid hormone-dependent frog metamorphosis. , 1997, 20, 53-66.		20
118	The right journal for the right time - Cell & amp; Bioscience. Cell and Bioscience, 2011, 1, 1.	4.8	20
119	A balance of Mad and Myc expression dictates larval cell apoptosis and adult stem cell development during Xenopus intestinal metamorphosis. Cell Death and Disease, 2017, 8, e2787-e2787.	6.3	20
120	Thyroid Hormone Receptor Alpha Mutations Lead to Epithelial Defects in the Adult Intestine in a Mouse Model of Resistance to Thyroid Hormone. Thyroid, 2019, 29, 439-448.	4.5	20
121	Life Without Thyroid Hormone Receptor. Endocrinology, 2021, 162, .	2.8	20
122	Cryopreservation ofXenopus transgenic lines. Molecular Reproduction and Development, 2004, 67, 65-69.	2.0	19
123	A requirement for hedgehog signaling in thyroid hormone-induced postembryonic intestinal remodeling. Cell and Bioscience, 2015, 5, 13.	4.8	19
124	Thyroid Hormone Receptor Is Essential for Larval Epithelial Apoptosis and Adult Epithelial Stem Cell Development but Not Adult Intestinal Morphogenesis during Xenopus tropicalis Metamorphosis. Cells, 2021, 10, 536.	4.1	19
125	Direct Activation of Amidohydrolase Domain-Containing 1 Gene by Thyroid Hormone Implicates a Role in the Formation of Adult Intestinal Stem Cells During Xenopus Metamorphosis. Endocrinology, 2015, 156, 3381-3393.	2.8	16
126	The Sox transcriptional factors: Functions during intestinal development in vertebrates. Seminars in Cell and Developmental Biology, 2017, 63, 58-67.	5.0	16

#	Article	IF	CITATIONS
127	Chromatin Immunoprecipitation for Studying Transcriptional Regulation in Xenopus Oocytes and Tadpoles. Methods in Molecular Biology, 2006, 322, 165-181.	0.9	16
128	Thyroid hormone-induced expression of a bZip-containing transcription factor activates epithelial cell proliferation during Xenopus larval-to-adult intestinal remodeling. Development Genes and Evolution, 2006, 216, 109-118.	0.9	15
129	Transcription of Human Zinc Finger ZNF268 Gene Requires an Intragenic Promoter Element. Journal of Biological Chemistry, 2006, 281, 24623-24636.	3.4	15
130	Mutational analysis of the cleavage of the cancer-associated laminin receptor by stromelysin-3 reveals the contribution of flanking sequences to site recognition and cleavage efficiency. International Journal of Molecular Medicine, 2009, 23, 389-97.	4.0	15
131	Tissueâ€dependent induction of apoptosis by matrix metalloproteinase stromelysinâ€3 during amphibian metamorphosis. Birth Defects Research Part C: Embryo Today Reviews, 2010, 90, 55-66.	3.6	15
132	Direct Activation of Xenopus lodotyrosine Deiodinase by Thyroid Hormone Receptor in the Remodeling Intestine during Amphibian Metamorphosis. Endocrinology, 2012, 153, 5082-5089.	2.8	15
133	Function of Thyroid Hormone Receptors During Amphibian Development. , 2002, 202, 153-176.		14
134	Spatial and temporal expression pattern of a novel gene in the frog Xenopus laevis: correlations with adult intestinal epithelial differentiation during metamorphosis. Gene Expression Patterns, 2004, 4, 321-328.	0.8	14
135	Differential regulation of two histidine ammonia-lyase genes during Xenopus development implicates distinct functions during thyroid hormone-induced formation of adult stem cells. Cell and Bioscience, 2013, 3, 43.	4.8	14
136	Thyroid hormone regulation of adult intestinal stem cells: Implications on intestinal development and homeostasis. Reviews in Endocrine and Metabolic Disorders, 2016, 17, 559-569.	5.7	14
137	A good sugar, d-mannose, suppresses autoimmune diabetes. Cell and Bioscience, 2017, 7, 48.	4.8	14
138	Thyroid and Corticosteroid Signaling in Amphibian Metamorphosis. Cells, 2022, 11, 1595.	4.1	14
139	Gene Regulation by Thyroid Hormone During Amphibian Metamorphosis: Implications on the Role of Cell-Cell and Cell-Extracellular Matrix Interactions. American Zoologist, 1997, 37, 195-207.	0.7	13
140	Intestinal homeostasis: a communication between life and death. Cell and Bioscience, 2020, 10, 66.	4.8	13
141	A Role of Endogenous Histone Acetyltransferase Steroid Hormone Receptor Coactivator 3 in Thyroid Hormone Signaling During <i>Xenopus</i> Intestinal Metamorphosis. Thyroid, 2021, 31, 692-702.	4.5	13
142	Histone methyltransferase Dot1L is a coactivator for thyroid hormone receptor during Xenopus development. FASEB Journal, 2017, 31, 4821-4831.	0.5	13
143	Extracellular domain of CD98hc is required for early murine development. Cell and Bioscience, 2011, 1, 7.	4.8	12
144	Direct Regulation of Histidine Ammonia-Lyase 2 Gene by Thyroid Hormone in the Developing Adult Intestinal Stem Cells. Endocrinology, 2017, 158, 1022-1033.	2.8	12

#	Article	IF	CITATIONS
145	Cell Proliferation Analysis during <i>Xenopus</i> Metamorphosis: Using 5-Ethynyl-2-Deoxyuridine (EdU) to Stain Proliferating Intestinal Cells. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot097717.	0.3	12
146	Functional Characterization of a Mutant Thyroid Hormone Receptor in Xenopus laevis. Journal of Biological Chemistry, 1996, 271, 33394-33403.	3.4	11
147	Activation of Sox3 Gene by Thyroid Hormone in the Developing Adult Intestinal Stem Cell During Xenopus Metamorphosis. Endocrinology, 2014, 155, 5024-5032.	2.8	11
148	Gene Expression Program Underlying Tail Resorption During Thyroid Hormone-Dependent Metamorphosis of the Ornamented Pygmy Frog Microhyla fissipes. Frontiers in Endocrinology, 2019, 10, 11.	3.5	11
149	Thyroid hormone receptor \hat{I}_{\pm} controls larval intestinal epithelial cell death by regulating the CDK1 pathway. Communications Biology, 2022, 5, 112.	4.4	11
150	Substrate specificity of Xenopus matrix metalloproteinase stromelysin-3. International Journal of Molecular Medicine, 2004, 14, 233-9.	4.0	11
151	Role of Thyroid Hormone Receptor in Amphibian Development. Methods in Molecular Biology, 2018, 1801, 247-263.	0.9	10
152	Evolutionary divergence in tail regeneration between Xenopus laevis and Xenopus tropicalis. Cell and Bioscience, 2021, 11, 71.	4.8	10
153	The adenoviral E1A protein displaces corepressors and relieves gene repression by unliganded thyroid hormone receptors in vivo. Cell Research, 2009, 19, 783-792.	12.0	9
154	The balance of two opposing factors Mad and Myc regulates cell fate during tissue remodeling. Cell and Bioscience, 2018, 8, 51.	4.8	9
155	Direct activation of tRNA methyltransferase-like 1 (Mettl1) gene by thyroid hormone receptor implicates a role in adult intestinal stem cell development and proliferation during Xenopus tropicalis metamorphosis. Cell and Bioscience, 2020, 10, 60.	4.8	8
156	Tissue-Specific Upregulation of MDS/EVI Gene Transcripts in the Intestine by Thyroid Hormone during Xenopus Metamorphosis. PLoS ONE, 2013, 8, e55585.	2.5	7
157	Functional Studies of Transcriptional Cofactors via Microinjection-Mediated Gene Editing in Xenopus. Methods in Molecular Biology, 2019, 1874, 507-524.	0.9	7
158	Knocking out histone methyltransferase PRMT1 leads to stalled tadpole development and lethality in Xenopus tropicalis. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129482.	2.4	7
159	Genetic basis for an evolutionary shift from ancestral preaxial to postaxial limb polarity in non-urodele vertebrates. Current Biology, 2021, 31, 4923-4934.e5.	3.9	7
160	Thyroid Hormone Receptor α Controls the Hind Limb Metamorphosis by Regulating Cell Proliferation and Wnt Signaling Pathways in XenopusÂtropicalis. International Journal of Molecular Sciences, 2022, 23, 1223.	4.1	7
161	Cell-cell and cell-ECM interactions in epithelial apoptosis and cell renewal during frog intestinal development. Cell Biochemistry and Biophysics, 1997, 27, 179-202.	1.8	6
162	A simple and efficient method to visualize and quantify the efficiency of chromosomal mutations from genome editing. Scientific Reports, 2016, 6, 35488.	3.3	6

#	Article	IF	CITATIONS
163	Involvement of epigenetic modifications in thyroid hormone-dependent formation of adult intestinal stem cells during amphibian metamorphosis. General and Comparative Endocrinology, 2019, 271, 91-96.	1.8	6
164	Characterization of Xenopus Tissue Inhibitor of Metalloproteinases-2: A Role in Regulating Matrix Metalloproteinase Activity during Development. PLoS ONE, 2012, 7, e36707.	2.5	5
165	EVI and MDS/EVI are required for adult intestinal stem cell formation during postembryonic vertebrate development. FASEB Journal, 2018, 32, 431-439.	0.5	5
166	The development of adult intestinal stem cells: Insights from studies on thyroid hormone-dependent anuran metamorphosis. Vitamins and Hormones, 2021, 116, 269-293.	1.7	5
167	Preface. Current Topics in Developmental Biology, 2013, 103, xv-xvi.	2.2	4
168	iPSCs are safe!. Cell and Bioscience, 2017, 7, 30.	4.8	4
169	Protein arginine methyltransferase 1 regulates cell proliferation and differentiation in adult mouse adult intestine. Cell and Bioscience, 2021, 11, 113.	4.8	4
170	Thyroid Hormone-Induced Apoptosis during Amphibian Metamorphosis. , 2003, , 9-19.		3
171	Thyroid hormone activates i Xenopus i MBD3 gene via an intronic TRE i in vivo i. Frontiers in Bioscience - Landmark, 2020, 25, 437-451.	3.0	3
172	sperm associated antigen 7 is activated by T3 during Xenopus tropicalis metamorphosis via a thyroid hormone response element within the first intron. Development Growth and Differentiation, 2021, , .	1.5	3
173	Substrate specificity of Xenopus matrix metalloproteinase stromelysin-3. International Journal of Molecular Medicine, 2004, 14, 233.	4.0	2
174	Thyroid hormone directly activates mitochondrial fission process 1 (Mtfp1) gene transcription during adult intestinal stem cell development and proliferation in Xenopus tropicalis. General and Comparative Endocrinology, 2020, 299, 113590.	1.8	2
175	Thyroid hormone and intestinal tumor: a Wnt connection. Oncotarget, 2018, 9, 31941-31941.	1.8	2
176	Methods for Investigating the Larval Period and Metamorphosis in Xenopus. Cold Spring Harbor Protocols, 2018, 2018, pdb.top097667.	0.3	1
177	Regulation of Apoptosis by Extracellular Matrix during Postembryonic Development inXenopus Laevis. , 2005, , 123-141.		0
178	The 2011 Ming K Jeang Award for Excellence in Cell & Bioscience. Cell and Bioscience, 2012, 2, 16.	4.8	0
179	The 2012 Ming K Jeang award for excellence in cell & bioscience. Cell and Bioscience, 2013, 3, 23.	4.8	0

180 Matrix Metallopeptidase-18/Collagenase 4. , 2013, , 744-747.

#	Article	IF	CITATIONS
181	The 2013 Ming K Jeang award for excellence in Cell & Bioscience. Cell and Bioscience, 2014, 4, 15.	4.8	0
182	Collagenase 4. , 2004, , 494-497.		0
183	An Efficient, Simple, and Noninvasive Procedure for Genotyping Aquatic and Nonaquatic Laboratory Animals. Journal of the American Association for Laboratory Animal Science, 2017, 56, 570-573.	1.2	0