Alireza Kashir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5425134/publications.pdf

Version: 2024-02-01

840776 752698 20 399 11 20 citations h-index g-index papers 20 20 20 242 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	High polarization and wake-up free ferroelectric characteristics in ultrathin Hf _{0.5} Zr _{0.5} O ₂ devices by control of oxygen-deficient layer. Nanotechnology, 2022, 33, 085206.	2.6	21
2	A grease for domain walls motion in HfO ₂ -based ferroelectrics. Nanotechnology, 2022, 33, 155703.	2.6	6
3	Two-step deposition of TiN capping electrodes to prevent degradation of ferroelectric properties in an in-situ crystallized TiN/Hf _{0.5} Zr _{0.5} O ₂ /TiN device. Nano Express, 2022, 3, 015004.	2.4	1
4	Hafnium Oxide (HfO ₂) – A Multifunctional Oxide: A Review on the Prospect and Challenges of Hafnium Oxide in Resistive Switching and Ferroelectric Memories. Small, 2022, 18, e2107575.	10.0	78
5	Improvement of endurance and switching speed in Hf _{$1\hat{a}$'x} Zr _x O _{2} thin films using a nanolaminate structure. Nanotechnology, 2022, 33, 395205.	2.6	2
6	Defect Engineering to Achieve Wakeâ€up Free HfO ₂ â€Based Ferroelectrics. Advanced Engineering Materials, 2021, 23, .	3.5	53
7	Towards an ideal high-κ HfO ₂ –ZrO ₂ -based dielectric. Nanoscale, 2021, 13, 13631-13640.	5.6	18
8	Large Remnant Polarization in a Wake-Up Free Hf _{0.5} Zr _{0.5} O ₂ Ferroelectric Film through Bulk and Interface Engineering. ACS Applied Electronic Materials, 2021, 3, 629-638.	4.3	79
9	Ferroelectric and Dielectric Properties of Hf _{0.5} Zr _{0.5} O ₂ Thin Film Near Morphotropic Phase Boundary. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000819.	1.8	18
10	Effects of high pressure oxygen annealing on Hf _{0.5} Zr _{0.5} O ₂ ferroelectric device. Nanotechnology, 2021, 32, 315712.	2.6	11
11	A CMOS-compatible morphotropic phase boundary. Nanotechnology, 2021, 32, 445706.	2.6	12
12	A new approach to achieving strong ferroelectric properties in TiN/Hf _{0.5} Zr _{0.5} O ₂ /TiN devices. Nanotechnology, 2021, 32, 055703.	2.6	21
13	Hf _{1–<i>x</i>} Zr _{<i>x</i>} O ₂ /ZrO ₂ Nanolaminate Thin Films as a High-κ Dielectric. ACS Applied Electronic Materials, 2021, 3, 5632-5640.	4.3	12
14	Effect of dead layers on the ferroelectric property of ultrathin HfZrOx film. Applied Physics Letters, 2020, 117, .	3.3	37
15	Strain effect on magnetic-exchange-induced phonon splitting in NiO films. Journal of Physics Condensed Matter, 2020, 32, 405607.	1.8	2
16	Spin-phonon interaction increased by compressive strain in antiferromagnetic MnO thin films. Journal of Physics Condensed Matter, 2020, 32, 175402.	1.8	1
17	A thin film perspective on quantum functional oxides. Current Applied Physics, 2019, 19, 207-214.	2.4	6
18	Strain-Induced Increase of Dielectric Constant in EuO Thin Film. Materials Research Express, 2019, 6, 106321.	1.6	5

Alireza Kashir

#	Article	IF	CITATIONS
19	Dielectric Properties of Strained Nickel Oxide Thin Films. Journal of the Korean Physical Society, 2019, 74, 984-988.	0.7	11
20	Pulsed Laser Deposition of Rocksalt Magnetic Binary Oxides. Thin Solid Films, 2019, 692, 137606.	1.8	5