Amrit Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5424872/publications.pdf Version: 2024-02-01

ΔΜΟΙΤ ΚΙΙΜΑΟ

#	Article	IF	CITATIONS
1	Mixed-metal hybrid ultramicroporous material (HUM) precursor to graphene-supported tetrataenite as a highly active and durable NPG catalyst for the OER. Dalton Transactions, 2021, 50, 5311-5317.	1.6	3
2	Breaking the trade-off between selectivity and adsorption capacity for gas separation. CheM, 2021, 7, 3085-3098.	5.8	68
3	An overview on trace CO2 removal by advanced physisorbent materials. Journal of Environmental Management, 2020, 255, 109874.	3.8	45
4	Innentitelbild: Ultramicropore Engineering by Dehydration to Enable Molecular Sieving of H ₂ by Calcium Trimesate (Angew. Chem. 37/2020). Angewandte Chemie, 2020, 132, 15898-15898.	1.6	0
5	Crystal engineering of a rectangular sql coordination network to enable xylenes selectivity over ethylbenzene. Chemical Science, 2020, 11, 6889-6895.	3.7	26
6	Reversible Switching between Nonporous and Porous Phases of a New SIFSIX Coordination Network Induced by a Flexible Linker Ligand. Journal of the American Chemical Society, 2020, 142, 6896-6901.	6.6	51
7	Ultramicropore Engineering by Dehydration to Enable Molecular Sieving of H 2 by Calcium Trimesate. Angewandte Chemie, 2020, 132, 16322-16328.	1.6	8
8	Ultramicropore Engineering by Dehydration to Enable Molecular Sieving of H ₂ by Calcium Trimesate. Angewandte Chemie - International Edition, 2020, 59, 16188-16194.	7.2	28
9	Metal-organic framework based carbon capture and purification technologies for clean environment. , 2019, , 5-61.		21
10	Synergistic sorbent separation for one-step ethylene purification from a four-component mixture. Science, 2019, 366, 241-246.	6.0	360
11	Tuning the Gateâ€Opening Pressure in a Switching pcu Coordination Network, Xâ€pcuâ€5â€Zn, by Pillarâ€Ligand Substitution. Angewandte Chemie - International Edition, 2019, 58, 18212-18217.	7.2	55
12	Highly selective CO ₂ removal for one-step liquefied natural gas processing by physisorbents. Chemical Communications, 2019, 55, 3219-3222.	2.2	31
13	Tuning the Gateâ€Opening Pressure in a Switching pcu Coordination Network, Xâ€pcuâ€5â€Zn, by Pillarâ€Ligand Substitution. Angewandte Chemie, 2019, 131, 18380-18385.	1.6	12
14	Trace CO ₂ capture by an ultramicroporous physisorbent with low water affinity. Science Advances, 2019, 5, eaax9171.	4.7	143
15	Efficient CO ₂ Removal for Ultra â€ Pure CO Production by Two Hybrid Ultramicroporous Materials. Angewandte Chemie - International Edition, 2018, 57, 3332-3336.	7.2	52
16	Efficient CO ₂ Removal for Ultra â€ Pure CO Production by Two Hybrid Ultramicroporous Materials. Angewandte Chemie, 2018, 130, 3390-3394.	1.6	12
17	Impact of partial interpenetration in a hybrid ultramicroporous material on C ₂ H ₂ /C ₂ H ₄ separation performance. Chemical Communications, 2018, 54, 3488-3491.	2.2	38
18	Finding the Optimal Balance between the Pore Size and Pore Chemistry in Hybrid Ultramicroporous Materials for Trace Acetylene Capture. ACS Applied Nano Materials, 2018, 1, 6000-6004.	2.4	12

Amrit Kumar

#	Article	IF	CITATIONS
19	Coordination Network That Reversibly Switches between Two Nonporous Polymorphs and a High Surface Area Porous Phase. Journal of the American Chemical Society, 2018, 140, 15572-15576.	6.6	51
20	Hybrid ultramicroporous materials (HUMs) with enhanced stability and trace carbon capture performance. Chemical Communications, 2017, 53, 5946-5949.	2.2	99
21	Flue-gas and direct-air capture of CO ₂ by porous metal–organic materials. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160025.	1.6	80
22	Water Vapor Sorption in Hybrid Pillared Square Grid Materials. Journal of the American Chemical Society, 2017, 139, 8508-8513.	6.6	90
23	The effect of centred versus offset interpenetration on C ₂ H ₂ sorption in hybrid ultramicroporous materials. Chemical Communications, 2017, 53, 11592-11595.	2.2	40
24	Controlling the Uptake and Regulating the Release of Nitric Oxide in Microporous Solids. ACS Applied Materials & Interfaces, 2017, 9, 43520-43528.	4.0	15
25	Benchmark C2H2/CO2 and CO2/C2H2 Separation by Two Closely Related Hybrid Ultramicroporous Materials. CheM, 2016, 1, 753-765.	5.8	349
26	Tuning Pore Size in Square‣attice Coordination Networks for Sizeâ€5elective Sieving of CO ₂ . Angewandte Chemie, 2016, 128, 10424-10428.	1.6	43
27	Tuning Pore Size in Square‣attice Coordination Networks for Size‣elective Sieving of CO ₂ . Angewandte Chemie - International Edition, 2016, 55, 10268-10272.	7.2	237
28	Theoretical Investigations of CO ₂ and H ₂ Sorption in Robust Molecular Porous Materials. Langmuir, 2016, 32, 11492-11505.	1.6	17
29	Direct Air Capture of CO ₂ by Physisorbent Materials. Angewandte Chemie - International Edition, 2015, 54, 14372-14377.	7.2	382
30	Hydrophobic pillared square grids for selective removal of CO ₂ from simulated flue gas. Chemical Communications, 2015, 51, 15530-15533.	2.2	115
31	Photochromism of novel chromenes constrained to be part of [2.2]paracyclophane: remarkable â€~phane' effects on the colored o-quinonoid intermediates. New Journal of Chemistry, 2013, 37, 82-88. 	1.4	18