
Weiwei Qi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5424844/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize. BMC Biotechnology, 2016, 16, 58.	3.3	162
2	Genome-Wide Characterization of <i>cis</i> -Acting DNA Targets Reveals the Transcriptional Regulatory Framework of <i>Opaque2</i> in Maize. Plant Cell, 2015, 27, 532-545.	6.6	130
3	Dek35 Encodes a PPR Protein that Affects cis -Splicing of Mitochondrial nad4 Intron 1 andÂSeed Development in Maize. Molecular Plant, 2017, 10, 427-441.	8.3	106
4	OPAQUE11 Is a Central Hub of the Regulatory Network for Maize Endosperm Development and Nutrient Metabolism. Plant Cell, 2018, 30, 375-396.	6.6	103
5	Mitochondrial Function and Maize Kernel Development Requires Dek2, a Pentatricopeptide Repeat Protein Involved in nad1 mRNA Splicing. Genetics, 2017, 205, 239-249.	2.9	82
6	The ZmbZIP22 Transcription Factor Regulates 27-kD γ-Zein Gene Transcription during Maize Endosperm Development. Plant Cell, 2018, 30, 2402-2424.	6.6	65
7	ZmMADS47 Regulates Zein Gene Transcription through Interaction with Opaque2. PLoS Genetics, 2016, 12, e1005991.	3.5	62
8	Editing of Mitochondrial Transcripts <i>nad3</i> and <i>cox2</i> by Dek10 Is Essential for Mitochondrial Function and Maize Plant Development. Genetics, 2017, 205, 1489-1501.	2.9	56
9	Maize <i>Dek37</i> Encodes a P-type PPR Protein That Affects <i>cis</i> -Splicing of Mitochondrial <i>nad2</i> Intron 1 and Seed Development. Genetics, 2018, 208, 1069-1082.	2.9	55
10	Identification and Characterization of Maize floury4 as a Novel Semidominant Opaque Mutant That Disrupts Protein Body Assembly Â. Plant Physiology, 2014, 165, 582-594.	4.8	52
11	Maize opaque10 Encodes a Cereal-Specific Protein That Is Essential for the Proper Distribution of Zeins in Endosperm Protein Bodies. PLoS Genetics, 2016, 12, e1006270.	3.5	43
12	Maize <i>reas1</i> Mutant Stimulates Ribosome Use Efficiency and Triggers Distinct Transcriptional and Translational Responses. Plant Physiology, 2016, 170, 971-988.	4.8	41
13	<i>>Dek42</i> encodes an RNAâ€binding protein that affects alternative preâ€mRNA splicing and maize kernel development. Journal of Integrative Plant Biology, 2019, 61, 728-748.	8.5	38
14	Maize <i>Dek15</i> Encodes the Cohesin-Loading Complex Subunit SCC4 and Is Essential for Chromosome Segregation and Kernel Development. Plant Cell, 2019, 31, 465-485.	6.6	35
15	Maize pentatricopeptide repeat protein DEK41 affects cis-splicing of mitochondrial nad4 intron 3 and is required for normal seed development. Journal of Experimental Botany, 2019, 70, 3795-3808.	4.8	35
16	Maize <i>Dek44</i> Encodes Mitochondrial Ribosomal Protein L9 and Is Required for Seed Development. Plant Physiology, 2019, 180, 2106-2119.	4.8	28
17	A SnRK1- <i>Zm</i> RFWD3-Opaque2 Signaling Axis Regulates Diurnal Nitrogen Accumulation in Maize Seeds. Plant Cell, 2020, 32, 2823-2841.	6.6	22
18	Maize Dek33 encodes a pyrimidine reductase in riboflavin biosynthesis that is essential for oil-body formation and ABA biosynthesis during seed development. Journal of Experimental Botany, 2019, 70, 5173-5187.	4.8	16

Weiwei Qi

#	Article	IF	CITATIONS
19	Maize pentatricopeptide repeat protein DEK53 is required for mitochondrial RNA editing at multiple sites and seed development. Journal of Experimental Botany, 2020, 71, 6246-6261.	4.8	16
20	<i>ENB1</i> encodes a cellulose synthase 5 that directs synthesis of cell wall ingrowths in maize basal endosperm transfer cells. Plant Cell, 2022, 34, 1054-1074.	6.6	13
21	<i>shrunken4</i> is a mutant allele of <i>ZmYSL2</i> that affects aleurone development and starch synthesis in maize. Genetics, 2021, 218, .	2.9	12
22	Comparative Study between the CRISPR/Cpf1 (Cas12a) and CRISPR/Cas9 Systems for Multiplex Gene Editing in Maize. Agriculture (Switzerland), 2021, 11, 429.	3.1	11
23	Maize ZmVPP5 is a truncated Vacuole H ⁺ â€PPase that confers hypersensitivity to salt stress. Journal of Integrative Plant Biology, 2016, 58, 518-528.	8.5	7
24	Accumulation of 22 kDa αâ€zeinâ€mediated nonzein protein in protein body of maize endosperm. New Phytologist, 2022, 233, 265-281.	7.3	5
25	Lactobacillus paracasei BD5115-Derived 2-Hydroxy-3-Methylbutyric Acid Promotes Intestinal Epithelial Cells Proliferation by Upregulating the MYC Signaling Pathway. Frontiers in Nutrition, 2022, 9, 799053.	3.7	4
26	Pollen-Specific CRISPR/Cas9 System to Increase Heritable Gene Mutations in Maize. Agriculture (Switzerland), 2021, 11, 751.	3.1	3
27	Establishment of a Bivector Genetic Transformation System in Recalcitrant Maize Inbred Lines. Agriculture (Switzerland), 2021, 11, 663.	3.1	1