Grzegorz Gladyszewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5424580/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Quantitative Nanomechanical Mapping of Starch/Kaolin Film Surfaces by Peak Force AFM. Polymers, 2021, 13, 244.	4.5	12
2	Physical Properties of Starch/Powdered Activated Carbon Composite Films. Polymers, 2021, 13, 4406.	4.5	4
3	The Influence of Kaolin Clay on the Mechanical Properties and Structure of Thermoplastic Starch Films. Polymers, 2020, 12, 73.	4.5	33
4	Identification of sugars and phenolic compounds in honey powders with the use of GC–MS, FTIR spectroscopy, and X-ray diffraction. Scientific Reports, 2020, 10, 16269.	3.3	45
5	Vickers microindentation deformation of different cleavage faces of potassium bichromate single crystals: Anisotropy in microhardness and crack formation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 790, 139642.	5.6	10
6	The Structure and Mechanical Properties of the Surface Layer of Polypropylene Polymers with Talc Additions. Materials, 2020, 13, 698.	2.9	21
7	Spectroscopic Studies of Dual Fluorescence in 2-(4-Fluorophenylamino)-5-(2,4-dihydroxybenzeno)-1,3,4-thiadiazole: Effect of Molecular Aggregation in a Micellar System. Molecules, 2018, 23, 2861.	3.8	23
8	Characterization of membrane processed honey and the effect of ultrafiltration with diafiltration on subsequent spray drying. Journal of Food Process Engineering, 2018, 41, e12818.	2.9	12
9	Fast Fourier transform analysis as a new tool for Olympic rifle coaches. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2017, 231, 63-67.	0.7	1
10	Wollastonite-filled and arabic gum-modified starch films. Part 1. Mechanical and structural properties Folie skrobiowe napeÅ,niane wollastonitem i modyfikowane gumÄ arabskÄ Cz. I. WÅ,aÅ›ciwoÅ›ci mechaniczne i strukturalne. Przemysl Chemiczny, 2016, 1, 109-111.	0.0	3
11	EXTERNAL BARREL TEMPERATURE OF A SMALLBORE OLYMPIC RIFLE. Biology of Sport, 2013, 30, 47-50.	3.2	2
12	Stress Evolution During Annealing of Cu/Au, Cu/Ag and Au/Ag Bilayers. Journal of Nanoscience and Nanotechnology, 2012, 12, 8647-8650.	0.9	1
13	Effect of annealing on the mechanical behaviour of Au/Cu and Cu/Au bilayers on silicon. Crystal Research and Technology, 2010, 45, 1272-1276.	1.3	1
14	Diffusional creep induced stress relaxation in thin Cu films on silicon. Microelectronic Engineering, 2008, 85, 2179-2182.	2.4	14
15	Stress evolution during intermittent deposition of metallic thin films. Microelectronic Engineering, 2006, 83, 2351-2354.	2.4	2
16	Evolution of stress and structure in Cu thin films. Crystal Research and Technology, 2005, 40, 509-516.	1.3	21
17	Surface ionization of the lanthanides. Vacuum, 2004, 74, 301-304.	3.5	2
18	Stress development during thin film growth and its modification under ion irradiation. Vacuum, 2003, 70, 243-248.	3.5	6

#	Article	IF	CITATIONS
19	Stress development during evaporation of Cu and Ag on silicon. Microelectronic Engineering, 2003, 70, 442-446.	2.4	13
20	XRD study of the structure of NiFe/Au and NiFe/Cu superlattices. Journal of Magnetism and Magnetic Materials, 2002, 239, 329-331.	2.3	6
21	Stresses in Multilayer Systems: Test of the sin2Î ⁻ Method. Advanced Engineering Materials, 2002, 4, 557-561.	3.5	1
22	The small terrace size approximation in the theory of RHEED oscillations. Journal of Crystal Growth, 2002, 235, 79-88.	1.5	9
23	Structure of Ag/Fe superlattices probed at different length scales. Thin Solid Films, 2000, 366, 51-62.	1.8	10
24	Stress relaxation effects in Ag/Pd superlattices at initial stages of ion beam mixing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 288, 266-269.	5.6	4
25	Structure and oscillatory coupling in NiFe/Ag multilayers with low coercivity. Journal of Magnetism and Magnetic Materials, 2000, 215-216, 570-572.	2.3	2
26	Irradiation effects in Cu/W multilayers: Ion beam mixing and structural evolution. Journal of Applied Physics, 1999, 86, 4847-4854.	2.5	23
27	Ion-assisted deposition of Ag(001)/Fe(001) multilayers: interface roughness. Thin Solid Films, 1998, 319, 44-48.	1.8	12
28	Structure characterization of metallic multilayers by symmetric and asymmetric X-ray diffraction. Thin Solid Films, 1998, 319, 78-80.	1.8	8
29	Structural and magnetic properties of Fe/Cr and Fe/Ag multilayers. Physica B: Condensed Matter, 1997, 234-236, 467-469.	2.7	9
30	Dimensional crossover in superconductor/spin-glass multilayers. European Physical Journal D, 1996, 46, 735-736.	0.4	0
31	On the Fe thickness dependence of the giant magnetoresistance in epitaxial Fe/Cr superlattices. Journal of Magnetism and Magnetic Materials, 1996, 156, 341-342.	2.3	13
32	Modification of structure, electric and magnetic properties of epitaxially grown Ag(001)/Fe(001) superlattices. Journal of Magnetism and Magnetic Materials, 1996, 156, 381-382.	2.3	3
33	Relation between structural and physical properties in magnetic and superconducting superlattices. Thin Solid Films, 1996, 275, 1-7.	1.8	4
34	Monte Carlo simulation of non-specular X-ray scattering profiles from multilayered structures. Thin Solid Films, 1996, 275, 184-187.	1.8	1
35	Epitaxially grown superlattices. Thin Solid Films, 1996, 275, 180-183.	1.8	2
36	Effect of ion irradiation on the structure of multilayers. Thin Solid Films, 1996, 275, 247-250.	1.8	7

#	Article	IF	CITATIONS
37	Monte Carlo simulation of nonspecular x-ray scattering profiles from multilayers. Physical Review B, 1996, 54, 11672-11680.	3.2	3
38	Interface of the Cuî—,W multilayers. Vacuum, 1994, 45, 285-287.	3.5	5
39	Modification of Cu—W superlattices by ion irradiation. Applied Surface Science, 1993, 65-66, 28-34.	6.1	6
40	X-ray diffraction study of residual stress modification in Cu/W superlattices irradiated by light and heavy ions. Nuclear Instruments & Methods in Physics Research B, 1993, 80-81, 404-407.	1.4	25
41	Determination of the residual stress tensor in Cu/W multilayers by xâ€ray diffraction. Applied Physics Letters, 1993, 62, 246-248.	3.3	36
42	Lowâ€ŧemperature mixing in Cu/W superlattices irradiated with light and heavy ions. Journal of Applied Physics, 1993, 73, 2786-2793.	2.5	30
43	Studying Structure of Metallic Superlattices by "Symmetric" and "Asymmetric" X-rAY Diffraction. Materials Research Society Symposia Proceedings, 1993, 308, 737.	0.1	0
44	Tungsten phase transformation induced by low-fluence Ar irradiation in Cuî—,W multilayers. Materials Letters, 1992, 12, 419-423.	2.6	10
45	Initial stages of ion-induced interfacial mixing in the Ag-Pd system. Materials Letters, 1992, 13, 287-291.	2.6	6
46	X-ray diffraction studies of ion beam mixing in Auî—,Ni superlattices. Nuclear Instruments & Methods in Physics Research B, 1992, 62, 541-544.	1.4	4
47	Atom-ion transition energies for alkali atoms on a tungsten surface. Surface Science, 1991, 247, 274-278.	1.9	12
48	High resolution studies of interfacial effects by small and large angle X-ray diffraction. Thin Solid Films, 1991, 204, 473-484.	1.8	31
49	Monte arlo Simulation of Surface Diffusion and Monolayer Completion. Physica Status Solidi (B): Basic Research, 1991, 166, K11.	1.5	Ο
50	Influence of Interfacial Effects on X-ray Diffraction Spectra of the [GaAs] _n [AlAs] _m Superlattices. Acta Physica Polonica A, 1991, 79, 213-216.	0.5	0
51	Ion beam mixing in Au-Cu compositionally modulated alloys. Materials Letters, 1990, 9, 325-328.	2.6	3
52	X-ray diffraction studies of Au-Ni superlattices. Materials Letters, 1990, 9, 329-331.	2.6	1
53	A study of the Ag/Cu and Au/Cu interfaces. Surface Science, 1990, 231, 90-94.	1.9	11
54	Structure properties of Pd/V superlattices formed by the dual electron-beam system. Surface Science, 1990, 231, 188-192.	1.9	1

#	Article	IF	CITATIONS
55	Growth of the Bi-Sb superlattice. Journal of Physics Condensed Matter, 1989, 1, 7795-7800.	1.8	6
56	A New method for studying ion beam mixing. Applied Physics A: Solids and Surfaces, 1989, 48, 521-526.	1.4	20
57	Ion Beam Mixing in Bi-Sb Superlattices. Physica Status Solidi A, 1989, 112, 753-756.	1.7	2
58	Kazimierz Juszczakowski – zapomniany pedagog. Annales Universitatis Mariae Curie-SkÅ,odowska Sectio F – Historia, 0, 73, 163.	0.0	1