Joonghyun Ryu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5424554/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Medial-ABC: an algorithm for the correspondence between myocardium and coronary artery mesh models based on the medial axis of coronary artery. Journal of Computational Design and Engineering, 2020, 7, 736-760.	1.5	0
2	VOROPACK-D: Real-time disk packing algorithm using Voronoi diagram. Applied Mathematics and Computation, 2020, 375, 125076.	1.4	9
3	Support-free hollowing with spheroids and efficient 3D printing utilizing circular printing motions based on Voronoi diagrams. Additive Manufacturing, 2020, 35, 101254.	1.7	10
4	MGOS: A library for molecular geometry and its operating system. Computer Physics Communications, 2020, 251, 107101.	3.0	2
5	Support-free hollowing for 3D printing via Voronoi diagram of ellipses. CAD Computer Aided Design, 2018, 101, 23-36.	1.4	47
6	BetaSCPWeb: side-chain prediction for protein structures using Voronoi diagrams and geometry prioritization. Nucleic Acids Research, 2016, 44, W416-W423.	6.5	31
7	Molecular Geometry and BULL!. , 2014, , .		0
8	BetaSCP2: A Program for the Optimal Prediction of Side-Chains in Proteins. Lecture Notes in Computer Science, 2014, , 333-340.	1.0	1
9	BetaMDGP: Protein Structure Determination Algorithm Based on the Beta-complex. Lecture Notes in Computer Science, 2014, , 130-155.	1.0	0
10	BULL! - The Molecular Geometry Engine Based on Voronoi Diagram, Quasi-Triangulation, and Beta-Complex. Lecture Notes in Computer Science, 2014, , 206-213.	1.0	1
11	Protein structure optimization by side-chain positioning via beta-complex. Journal of Global Optimization, 2013, 57, 217-250.	1.1	10
12	Anomalies in quasi-triangulations and beta-complexes of spherical atoms in molecules. CAD Computer Aided Design, 2013, 45, 35-52.	1.4	16
13	BetaMol: A Molecular Modeling, Analysis and Visualization Software Based on the Beta-Complex and the Quasi-Triangulation. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2012, 6, 389-403.	0.3	10
14	QTF: Quasi-triangulation file format. CAD Computer Aided Design, 2012, 44, 835-845.	1.4	11
15	Betaâ€decomposition for the volume and area of the union of threeâ€dimensional balls and their offsets. Journal of Computational Chemistry, 2012, 33, 1252-1273.	1.5	15
16	BetaMol: Molecular Modeling, Analysis, and Visualization Software Based on the Beta-Complex Derived from the Voronoi Diagram. , 2011, , .		0
17	BetaDock: Shape-Priority Docking Method Based on Beta-Complex. Journal of Biomolecular Structure and Dynamics, 2011, 29, 219-242.	2.0	36
18	Highly Stable Au Nanoparticles with Tunable Spacing and Their Potential Application in Surface Plasmon Resonance Biosensors. Advanced Functional Materials. 2010. 20. 78-86.	7.8	67

Joonghyun Ryu

#	Article	IF	CITATIONS
19	Topologies of surfaces on molecules and their computation in time. CAD Computer Aided Design, 2010, 42, 795-807.	1.4	4
20	Three-dimensional beta-shapes and beta-complexes via quasi-triangulation. CAD Computer Aided Design, 2010, 42, 911-929.	1.4	52
21	Protein-Ligand Docking Based on Beta-Shape. Lecture Notes in Computer Science, 2010, , 123-138.	1.0	5
22	Triangulation of molecular surfaces. CAD Computer Aided Design, 2009, 41, 463-478.	1.4	28
23	Protein-Ligand Docking Based on ß-shape. , 2009, , .		2
24	The β-Shape and β-Complex for Analysis of Molecular Structures. Studies in Computational Intelligence, 2009, , 47-66.	0.7	3
25	Pocket extraction on proteins via the Voronoi diagram of spheres. Journal of Molecular Graphics and Modelling, 2008, 26, 1104-1112.	1.3	33
26	Upper and lower bounds of op-code probabilities for Edgebreaker. International Journal of Computational Science and Engineering, 2007, 3, 23.	0.4	0
27	eta-shape Based Computation of Blending Surfaces on a Molecule. , 2007, , .		4
28	Molecular surfaces on proteins via beta shapes. CAD Computer Aided Design, 2007, 39, 1042-1057.	1.4	70
29	Real-Time Triangulation of Molecular Surfaces. , 2007, , 55-67.		3
30	Three-dimensional beta shapes. CAD Computer Aided Design, 2006, 38, 1179-1191.	1.4	47
31	Parameter selection of pocket extraction algorithm using interaction interface. Journal of Zhejiang University: Science A, 2006, 7, 1492-1499.	1.3	1
32	Connolly Surface on an Atomic Structure via Voronoi Diagram of Atoms. Journal of Computer Science and Technology, 2006, 21, 255-260.	0.9	8
33	The B-shape and B-complex for three-dimensional spheres. , 2006, , .		1
34	Fast conversion of dynamic B spline curves into a set of power form polynomial curves. , 2000, , .		0