Andrew M Hall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5424539/publications.pdf

Version: 2024-02-01

55 2,268 23 42 papers citations h-index g-index

56 56 56 3416
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Drug toxicity in the proximal tubule: new models, methods and mechanisms. Pediatric Nephrology, 2022, 37, 973-982.	1.7	19
2	Neurogenic and pericytic plasticity of conditionally immortalized cells derived from renal erythropoietinâ€producing cells. Journal of Cellular Physiology, 2022, 237, 2420-2433.	4.1	6
3	Acute adaptation of renal phosphate transporters in the murine kidney to oral phosphate intake requires multiple signals. Acta Physiologica, 2022, 235, e13815.	3.8	8
4	FC018: The B1 H+-ATPASE (ATP6V1B1) Subunit is Required for Non-Type a Intercalated Cell Function During Alkalosis. Nephrology Dialysis Transplantation, 2022, 37, .	0.7	0
5	Editorial: Proceedings of the 2021 Indiana O'Brien Center Microscopy Workshop. Frontiers in Physiology, 2022, 13, 891526.	2.8	O
6	Metabolic mechanisms of acute proximal tubular injury. Pflugers Archiv European Journal of Physiology, 2022, 474, 813-827.	2.8	7
7	Cover Image, Volume 237, Number 5, May 2022. Journal of Cellular Physiology, 2022, 237, .	4.1	O
8	The proximal tubule, protein uptake, and the riddle of the segments. Kidney International, 2021, 99, 803-805.	5.2	6
9	Intravital kidney microscopy: entering a new era. Kidney International, 2021, 100, 527-535.	5.2	6
10	Live Imaging of Mitochondria in Kidney Tissue. Methods in Molecular Biology, 2021, 2275, 393-402.	0.9	1
11	Changes in NAD and Lipid Metabolism Drive Acidosis-Induced Acute Kidney Injury. Journal of the American Society of Nephrology: JASN, 2021, 32, 342-356.	6.1	38
12	Multiparametric imaging reveals that mitochondriaâ€rich intercalated cells in the kidney collecting duct have a very high glycolytic capacity. FASEB Journal, 2020, 34, 8510-8525.	0.5	12
13	Quantitative intravital Ca ²⁺ imaging maps single cell behavior to kidney tubular structure. American Journal of Physiology - Renal Physiology, 2020, 319, F245-F255.	2.7	7
14	The iron chelator Deferasirox causes severe mitochondrial swelling without depolarization due to a specific effect on inner membrane permeability. Scientific Reports, 2020, 10, 1577.	3.3	18
15	Changes in mitochondrial NAD redox state drive acidosis induced acute kidney injury. FASEB Journal, 2020, 34, 1-1.	0.5	O
16	Highâ€Throughput Imaging of Kidney Cell Function to Elucidate Unknown Mechanisms of Antiretroviral Drug Toxicity. FASEB Journal, 2020, 34, 1-1.	0.5	0
17	Targeting glycolysis in proliferative kidney diseases. American Journal of Physiology - Renal Physiology, 2019, 317, F1531-F1535.	2.7	7
18	Axial differences in endocytosis along the kidney proximal tubule. American Journal of Physiology - Renal Physiology, 2019, 317, F1526-F1530.	2.7	10

#	Article	IF	CITATIONS
19	A Case of Drug-Induced Proximal Tubular Dysfunction. Clinical Journal of the American Society of Nephrology: CJASN, 2019, 14, 1384-1387.	4.5	6
20	Overcoming Endocytosis Deficiency by Cubosome Nanocarriers. ACS Applied Bio Materials, 2019, 2, 2490-2499.	4.6	23
21	3â€D Electron Microscopy of Mouse Proximal Convoluted Tubule Endoâ€lysosomal System. FASEB Journal, 2019, 33, 863.5.	0.5	0
22	Mitochondrial Rich Proton Pumping Cells in the Kidney and Epididymis are Highly Glycolytic. FASEB Journal, 2019, 33, 862.7.	0.5	0
23	Quantitative Intravital Imaging of Endoâ€Lysosomal System Dynamics in the Kidney Proximal Tubule. FASEB Journal, 2019, 33, 575.2.	0.5	0
24	Glycine Amidinotransferase (GATM), Renal Fanconi Syndrome, and Kidney Failure. Journal of the American Society of Nephrology: JASN, 2018, 29, 1849-1858.	6.1	53
25	Renal Tubular Cell Mitochondrial Dysfunction Occurs Despite Preserved Renal Oxygen Delivery in Experimental Septic Acute Kidney Injury. Critical Care Medicine, 2018, 46, e318-e325.	0.9	36
26	Combined Structural and Functional Imaging of the Kidney Reveals Major Axial Differences in Proximal Tubule Endocytosis. Journal of the American Society of Nephrology: JASN, 2018, 29, 2696-2712.	6.1	73
27	The targeted anti-oxidant MitoQ causes mitochondrial swelling and depolarization in kidney tissue. Physiological Reports, 2018, 6, e13667.	1.7	59
28	Multiphoton imaging reveals axial differences in metabolic autofluorescence signals along the kidney proximal tubule. American Journal of Physiology - Renal Physiology, 2018, 315, F1613-F1625.	2.7	15
29	Intravital Imaging of the Mouse Kidney Reveals Axial Differences in Calcium Signaling along the Nephron. FASEB Journal, 2018, 32, 620.11.	0.5	0
30	Multiphoton Imaging Reveals Differences in Metabolic Autoâ€fluorescence Signals Between Early and Late Proximal Tubule Segments of the Kidney. FASEB Journal, 2018, 32, 618.18.	0.5	0
31	New frontiers in intravital microscopy of the kidney. Current Opinion in Nephrology and Hypertension, 2017, 26, 172-178.	2.0	7
32	Mitochondria as therapeutic targets in acute kidney injury. Current Opinion in Nephrology and Hypertension, 2016, 25, 355-362.	2.0	53
33	Renal Fanconi Syndrome Is Caused by a Mistargeting-Based Mitochondriopathy. Cell Reports, 2016, 15, 1423-1429.	6.4	27
34	Long wavelength multiphoton excitation is advantageous for intravital kidney imaging. Kidney International, 2016, 89, 712-719.	5.2	39
35	Design and performance of an ultra-flexible two-photon microscope for in vivo research. Biomedical Optics Express, 2015, 6, 4228.	2.9	55
36	The urinary proteome and metabonome differ from normal in adults with mitochondrial disease. Kidney International, 2015, 87, 610-622.	5.2	41

#	Article	IF	CITATIONS
37	Drug-induced renal Fanconi syndrome. QJM - Monthly Journal of the Association of Physicians, 2014, 107, 261-269.	0.5	148
38	Mistargeting of Peroxisomal EHHADH and Inherited Renal Fanconi's Syndrome. New England Journal of Medicine, 2014, 370, 129-138.	27.0	99
39	Dynamic Multiphoton Microscopy: Focusing Light on Acute Kidney Injury. Physiology, 2014, 29, 334-342.	3.1	29
40	Update on tenofovir toxicity in the kidney. Pediatric Nephrology, 2013, 28, 1011-1023.	1.7	47
41	In vivo multiphoton imaging of mitochondrial structure and function during acute kidney injury. Kidney International, 2013, 83, 72-83.	5.2	173
42	Mitochondrial diseaseâ€"an important cause of end-stage renal failure. Pediatric Nephrology, 2013, 28, 357-361.	1.7	37
43	Maintaining Mitochondrial Morphology in AKI: Looks Matter. Journal of the American Society of Nephrology: JASN, 2013, 24, 1185-1187.	6.1	6
44	Fluorescence imaging reveals differences in mitochondrial function along the collecting duct. FASEB Journal, 2012, 26, .	0.5	0
45	Imaging intracellular calcium signals in intact kidney tissue. FASEB Journal, 2012, 26, 690.8.	0.5	0
46	Pores for Thought: New Strategies to Re-energize Stressed Mitochondria in Acute Kidney Injury. Journal of the American Society of Nephrology: JASN, 2011, 22, 986-989.	6.1	7
47	Tenofovir-Associated Kidney Toxicity in HIV-Infected Patients: A Review of the Evidence. American Journal of Kidney Diseases, 2011, 57, 773-780.	1.9	323
48	Multiphoton Imaging of the Functioning Kidney. Journal of the American Society of Nephrology: JASN, 2011, 22, 1297-1304.	6.1	42
49	Severe hyperlactaemia in the setting of alkalaemia. CKJ: Clinical Kidney Journal, 2009, 2, 408-411.	2.9	2
50	Multiphoton Imaging Reveals Differences in Mitochondrial Function between Nephron Segments. Journal of the American Society of Nephrology: JASN, 2009, 20, 1293-1302.	6.1	132
51	IF1: setting the pace of the F1Fo-ATP synthase. Trends in Biochemical Sciences, 2009, 34, 343-350.	7.5	120
52	Subclinical Tubular Injury in HIV-Infected Individuals on Antiretroviral Therapy: A Cross-sectional Analysis. American Journal of Kidney Diseases, 2009, 54, 1034-1042.	1.9	70
53	Tenofovirâ€associated renal and bone toxicity. HIV Medicine, 2009, 10, 482-487.	2.2	275
54	Renal function and mitochondrial cytopathy (MC): more questions than answers?. QJM - Monthly Journal of the Association of Physicians, 2008, 101, 755-766.	0.5	25

#	Article	IF	CITATIONS
55	The Not So â€ ⁻ Mighty Chondrion': Emergence of Renal Diseases due to Mitochondrial Dysfunction. Nephron Physiology, 2006, 105, p1-p10.	1.2	101