Carla Perrone-Capano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5424163/publications.pdf

Version: 2024-02-01

126708 2,904 78 33 citations h-index papers

51 g-index 81 81 81 3313 docs citations times ranked citing authors all docs

182168

#	Article	IF	CITATIONS
1	Behavioral, Anti-Inflammatory, and Neuroprotective Effects of a Novel FPR2 Agonist in Two Mouse Models of Autism. Pharmaceuticals, 2022, 15, 161.	1.7	8
2	In Vitro and In Silico Analysis of the Residence Time of Serotonin 5-HT ₇ Receptor Ligands with Arylpiperazine Structure: A Structure–Kinetics Relationship Study. ACS Chemical Neuroscience, 2022, 13, 497-509.	1.7	3
3	Music affects functional brain connectivity and is effective in the treatment of neurological disorders. Reviews in the Neurosciences, 2022, 33, 789-801.	1.4	10
4	Lmx1a-Dependent Activation of miR-204/211 Controls the Timing of Nurr1-Mediated Dopaminergic Differentiation. International Journal of Molecular Sciences, 2022, 23, 6961.	1.8	3
5	Expression of Cholinergic Markers and Characterization of Splice Variants during Ontogenesis of Rat Dorsal Root Ganglia Neurons. International Journal of Molecular Sciences, 2021, 22, 5499.	1.8	3
6	Presynaptic protein synthesis and brain plasticity: From physiology to neuropathology. Progress in Neurobiology, 2021, 202, 102051.	2.8	17
7	Deregulated Local Protein Synthesis in the Brain Synaptosomes of a Mouse Model for Alzheimer's Disease. Molecular Neurobiology, 2020, 57, 1529-1541.	1.9	25
8	Cross Talk at the Cytoskeletonâ€"Plasma Membrane Interface: Impact on Neuronal Morphology and Functions. International Journal of Molecular Sciences, 2020, 21, 9133.	1.8	10
9	Interplay between Peripheral and Central Inflammation in Obesity-Promoted Disorders: The Impact on Synaptic Mitochondrial Functions. International Journal of Molecular Sciences, 2020, 21, 5964.	1.8	42
10	Neurodevelopmental Disorders: Effect of High-Fat Diet on Synaptic Plasticity and Mitochondrial Functions. Brain Sciences, 2020, 10, 805.	1.1	15
11	Molecular Regulation in Dopaminergic Neuron Development. Cues to Unveil Molecular Pathogenesis and Pharmacological Targets of Neurodegeneration. International Journal of Molecular Sciences, 2020, 21, 3995.	1.8	16
12	Role of the Serotonin Receptor 7 in Brain Plasticity: From Development to Disease. International Journal of Molecular Sciences, 2020, 21, 505.	1.8	38
13	The microRNA-29a Modulates Serotonin 5-HT7 Receptor Expression and Its Effects on Hippocampal Neuronal Morphology. Molecular Neurobiology, 2019, 56, 8617-8627.	1.9	23
14	Cystatin B Involvement in Synapse Physiology of Rodent Brains and Human Cerebral Organoids. Frontiers in Molecular Neuroscience, 2019, 12, 195.	1.4	47
15	Neutralization of ILâ€17 rescues amyloidâ€Î²â€induced neuroinflammation and memory impairment. British Journal of Pharmacology, 2019, 176, 3544-3557.	2.7	93
16	miR-34b/c Regulates Wnt1 and Enhances Mesencephalic Dopaminergic Neuron Differentiation. Stem Cell Reports, 2018, 10, 1237-1250.	2.3	47
17	Information content of dendritic spines after motor learning. Behavioural Brain Research, 2018, 336, 256-260.	1.2	11
18	Biological bases of human musicality. Reviews in the Neurosciences, 2017, 28, 235-245.	1.4	11

#	Article	IF	Citations
19	Serotonin 5â€< scp>HT7 receptor increases the density of dendritic spines and facilitates synaptogenesis in forebrain neurons. Journal of Neurochemistry, 2017, 141, 647-661.	2.1	66
20	Structural modifications of the serotonin 5-HT7 receptor agonist N-(4-cyanophenylmethyl)-4-(2-biphenyl)-1-piperazinehexanamide (LP-211) to improve inÂvitro microsomal stability: A case study. European Journal of Medicinal Chemistry, 2016, 120, 363-379.	2.6	14
21	Effects of Mecp2 loss of function in embryonic cortical neurons: a bioinformatics strategy to sort out non-neuronal cells variability from transcriptome profiling. BMC Bioinformatics, 2016, 17, 14.	1.2	10
22	The 5-HT7 receptor triggers cerebellar long-term synaptic depression via PKC-MAPK. Neuropharmacology, 2016, 101, 426-438.	2.0	46
23	Quantifying barcodes of dendritic spines using entropy-based metrics. Scientific Reports, 2015, 5, 14622.	1.6	7
24	Activation of 5-HT7 receptor stimulates neurite elongation through mTOR, Cdc42 and actin filaments dynamics. Frontiers in Behavioral Neuroscience, 2015, 9, 62.	1.0	43
25	Editorial: Further Understanding of Serotonin 7 Receptors' Neuro-psycho-pharmacology. Frontiers in Behavioral Neuroscience, 2015, 9, 307.	1.0	1
26	The serotonin receptor 7 and the structural plasticity of brain circuits. Frontiers in Behavioral Neuroscience, 2014, 8, 318.	1.0	51
27	Local gene expression in nerve endings. Developmental Neurobiology, 2014, 74, 279-291.	1.5	36
28	Impulsivity and home-cage activity are decreased by lentivirus-mediated silencing of serotonin transporter in the rat hippocampus. Neuroscience Letters, 2013, 548, 38-43.	1.0	11
29	The serotonin receptor 7 promotes neurite outgrowth via ERK and Cdk5 signaling pathways. Neuropharmacology, 2013, 67, 155-167.	2.0	62
30	Adult neural stem cells: an endogenous tool to repair brain injury?. Journal of Neurochemistry, 2013, 124, 159-167.	2.1	79
31	Balance between Excitation and Inhibition Controls the Temporal Organization of Neuronal Avalanches. Physical Review Letters, 2012, 108, 228703.	2.9	113
32	Methylphenidate administration determines enduring changes in neuroglial network in rats. European Neuropsychopharmacology, 2012, 22, 53-63.	0.3	23
33	Direct Regulation of Pitx3 Expression by Nurr1 in Culture and in Developing Mouse Midbrain. PLoS ONE, 2012, 7, e30661.	1.1	45
34	Restriction of Neural Precursor Ability to Respond to Nurr1 by Early Regional Specification. PLoS ONE, 2012, 7, e51798.	1.1	13
35	Social withdrawal and gambling-like profile after lentiviral manipulation of DAT expression in the rat accumbens. International Journal of Neuropsychopharmacology, 2010, 13, 1329-1342.	1.0	28
36	Comparison of Gene Expression Profile in Embryonic Mesencephalon and Neuronal Primary Cultures. PLoS ONE, 2009, 4, e4977.	1.1	12

#	Article	IF	CITATIONS
37	Methylphenidate to adolescent rats drives enduring changes of accumbal Htr7 expression: implications for impulsive behavior and neuronal morphology. Genes, Brain and Behavior, 2009, 8, 356-368.	1.1	66
38	The molecular code involved in midbrain dopaminergic neuron development and maintenance. Rendiconti Lincei, 2008, 19, 271-290.	1.0	4
39	Ribosomal RNAs Synthesized by Isolated Squid Nerves and Ganglia Differ from Native Ribosomal RNAs. Journal of Neurochemistry, 2008, 72, 910-918.	2.1	5
40	Pre-filtering improves reliability of Affymetrix GeneChips results when used to analyze gene expression in complex tissues. Molecular and Cellular Probes, 2008, 22, 115-121.	0.9	4
41	Chronic cocaine administration modulates the expression of transcription factors involved in midbrain dopaminergic neuron function. Experimental Neurology, 2007, 203, 472-480.	2.0	18
42	Activity-dependent neural network model on scale-free networks. Physical Review E, 2007, 76, 016107.	0.8	61
43	Neuronal avalanches and brain plasticity. AIP Conference Proceedings, 2007, , .	0.3	O
44	Bdnf gene is a downstream target of Nurr1 transcription factor in rat midbrain neurons in vitro. Journal of Neurochemistry, 2007, 102, 441-453.	2.1	85
45	GDNF signaling in embryonic midbrain neurons in vitro. Brain Research, 2007, 1159, 28-39.	1.1	39
46	Self-Organized Criticality Model for Brain Plasticity. Physical Review Letters, 2006, 96, 028107.	2.9	210
47	Gene expression pathways induced by axotomy and decentralization of rat superior cervical ganglion neurons. European Journal of Neuroscience, 2006, 23, 65-74.	1.2	22
48	Short-Term Effects of Adolescent Methylphenidate Exposure on Brain Striatal Gene Expression and Sexual/Endocrine Parameters in Male Rats. Annals of the New York Academy of Sciences, 2006, 1074, 52-73.	1.8	65
49	Methylphenidate Administration to Adolescent Rats Determines Plastic Changes on Reward-Related Behavior and Striatal Gene Expression. Neuropsychopharmacology, 2006, 31, 1946-1956.	2.8	110
50	Enhancement of Dopaminergic Differentiation in Proliferating Midbrain Neuroblasts by Sonic Hedgehog and Ascorbic Acid. Neural Plasticity, 2004, 11, 45-57.	1.0	28
51	Modulation of nurr1 gene expression in mesencephalic dopaminergic neurones. Journal of Neurochemistry, 2004, 90, 256-256.	2.1	O
52	Modulation of nurr1 gene expression in mesencephalic dopaminergic neurones. Journal of Neurochemistry, 2004, 88, 1283-1294.	2.1	30
53	Altered midbrain dopaminergic neurotransmission during development in an animal model of ADHD. Neuroscience and Biobehavioral Reviews, 2003, 27, 661-669.	2.9	87
54	Chronic activation of ERK and neurodegenerative diseases. BioEssays, 2003, 25, 1085-1095.	1.2	183

#	Article	IF	Citations
55	Ontogeny of kainate receptor gene expression in the developing rat midbrain and striatum. Molecular Brain Research, 2002, 104, 1-10.	2.5	16
56	Differential Regulation of Transcripts for Dystrophin Isoforms, Dystroglycan, and α3AChR Subunit in Mouse Sympathetic Ganglia Following Postganglionic Nerve Crush. Neurobiology of Disease, 2001, 8, 513-524.	2.1	9
57	Regionalized Neurofilament Accumulation and Motoneuron Degeneration Are Linked Phenotypes in Wobbler Neuromuscular Disease. Neurobiology of Disease, 2001, 8, 581-589.	2.1	18
58	Tissue-transglutaminase in rat and human brain: light and electron immunocytochemical analysis and in situ hybridization study. Brain Research Bulletin, 2001, 56, 173-182.	1.4	36
59	Ontogeny of AMPA receptor gene expression in the developing rat midbrain and striatum. Molecular Brain Research, 2001, 96, 133-141.	2.5	16
60	Messenger RNAs in synaptosomal fractions from rat brain. Molecular Brain Research, 2001, 97, 171-176.	2.5	12
61	Neurofilament homeostasis and motoneurone degeneration. BioEssays, 2000, 23, 24-33.	1.2	31
62	Epigenetic cues in midbrain dopaminergic neuron development. Neuroscience and Biobehavioral Reviews, 2000, 24, 119-124.	2.9	21
63	Multiplex semi-quantitative reverse transcriptase–polymerase chain reaction of low abundance neuronal mRNAs. Brain Research Protocols, 1999, 4, 395-406.	1.7	57
64	Dystrophin localization and gene expression in the developing nervous system of the chick., 1998, 51, 109.		2
65	Early upregulation of medium neurofilament gene expression in developing spinal cord of the wobbler mouse mutant. Molecular Brain Research, 1996, 38, 267-275.	2.5	29
66	Dopamine transporter gene expression in rat mesencephalic dopaminergic neurons is increased by direct interaction with target striatal cells in vitro. Molecular Brain Research, 1996, 39, 160-166.	2.5	30
67	Epigenetic factors and midbrain dopaminergic neurone development. BioEssays, 1996, 18, 817-824.	1.2	14
68	Target Striatal Cells Regulate Development of Midbrain Dopaminergic Neurones., 1996,, 95-107.		0
69	Target cells modulate dopamine transporter gene expression during brain development. NeuroReport, 1994, 5, 1145-1148.	0.6	38
70	Kinesin mRNA Is Present in the Squid Giant Axon. Journal of Neurochemistry, 1994, 63, 13-18.	2.1	46
71	Neurofilament Proteins Are Synthesized in Nerve Endings from Squid Brain. Journal of Neurochemistry, 1993, 61, 1144-1146.	2.1	56
72	Protein Synthesis in a Synaptosomal Fraction from Squid Brain. Molecular and Cellular Neurosciences, 1993, 4, 366-374.	1.0	46

#	Article	IF	CITATIONS
73	\hat{l}^2 -Actin and \hat{l}^2 -Tubulin are components of a heterogeneous mRNA population present in the squid giant axon. Molecular and Cellular Neurosciences, 1992, 3, 133-144.	1.0	56
74	Active polysomes in the axoplasm of the squid giant axon. Journal of Neuroscience Research, 1991, 28, 18-28.	1.3	115
75	Occurrence and Sequence Complexity of Polyadenylated RNA in Squid Axoplasm. Journal of Neurochemistry, 1987, 49, 698-704.	2.1	74
76	Complexity of Nuclear and Polysomal RNA from Squid Optic Lobe and Gill. Journal of Neurochemistry, 1986, 46, 1517-1521.	2.1	15
77	Synthesis of rat brain DNA during acquisition of an appetitive task. Pharmacology Biochemistry and Behavior, 1986, 25, 651-658.	1.3	22
78	DNA Turnover in Rat Cerebral Cortex. Journal of Neurochemistry, 1982, 38, 52-56.	2.1	44