Junwei Zhang

List of Publications by Citations

Source: https://exaly.com/author-pdf/5424036/junwei-zhang-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

72 1,694 21 39 g-index

79 2,338 10.1 4.69 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
72	Multidirection Piezoelectricity in Mono- and Multilayered Hexagonal ⊞nSe. <i>ACS Nano</i> , 2018 , 12, 4976-49	9 8 26.7	133
71	Room-Temperature Ferroelectricity in Hexagonally Layered 🛭 n2Se3 Nanoflakes down to the Monolayer Limit. <i>Advanced Functional Materials</i> , 2018 , 28, 1803738	15.6	127
70	Current-driven magnetization switching in a van der Waals ferromagnet FeGeTe. <i>Science Advances</i> , 2019 , 5, eaaw8904	14.3	119
69	N∄l-type skyrmion in WTe/FeGeTe van der Waals heterostructure. <i>Nature Communications</i> , 2020 , 11, 3860	17.4	81
68	Fe3O4graphene hybrids: nanoscale characterization and their enhanced electromagnetic wave absorption in gigahertz range. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 1	2.3	78
67	AsP/InSe Van der Waals Tunneling Heterojunctions with Ultrahigh Reverse Rectification Ratio and High Photosensitivity. <i>Advanced Functional Materials</i> , 2019 , 29, 1900314	15.6	76
66	Gate-Tunable and Multidirection-Switchable Memristive Phenomena in a Van Der Waals Ferroelectric. <i>Advanced Materials</i> , 2019 , 31, e1901300	24	67
65	One-pot polylol synthesis of graphene decorated with size- and density-tunable Fe3O4 nanoparticles for porcine pancreatic lipase immobilization. <i>Carbon</i> , 2013 , 60, 488-497	10.4	66
64	Crystalline-Amorphous Permalloy@Iron Oxide Core-Shell Nanoparticles Decorated on Graphene as High-Efficiency, Lightweight, and Hydrophobic Microwave Absorbents. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 6374-6383	9.5	64
63	Spin-momentum locking and spin-orbit torques in magnetic nano-heterojunctions composed of Weyl semimetal WTe. <i>Nature Communications</i> , 2018 , 9, 3990	17.4	64
62	High Spin Hall Conductivity in Large-Area Type-II Dirac Semimetal PtTe. <i>Advanced Materials</i> , 2020 , 32, e2000513	24	61
61	Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field. <i>Applied Physics Letters</i> , 2018 , 112, 132405	3.4	54
60	Co@CoDItore-shell three-dimensional nano-network for high-performance electrochemical energy storage. <i>Small</i> , 2014 , 10, 2618-24	11	46
59	Recyclable Fe3O4@SiO2-Ag magnetic nanospheres for the rapid decolorizing of dye pollutants. <i>Chinese Journal of Catalysis</i> , 2013 , 34, 1378-1385	11.3	39
58	Understanding the piezoelectricity of high-performance potassium sodium niobate ceramics from diffused multi-phase coexistence and domain feature. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 16803-	16811	38
57	Enhancement of Dielectric Permittivity of TiCT MXene/Polymer Composites by Controlling Flake Size and Surface Termination. <i>ACS Applied Materials & Enhance of Surfaces</i> , 2019 , 11, 27358-27362	9.5	36
56	Facile one-step synthesis of Ag@Fe3O4 coreBhell nanospheres for reproducible SERS substrates. Journal of Molecular Structure, 2013, 1046, 74-81	3.4	35

(2015-2020)

55	Creating zero-field skyrmions in exchange-biased multilayers through X-ray illumination. <i>Nature Communications</i> , 2020 , 11, 949	17.4	34
54	Determination of chirality and density control of NBI-type skyrmions with in-plane magnetic field. <i>Communications Physics</i> , 2018 , 1,	5.4	30
53	Creation of a thermally assisted skyrmion lattice in Pt/Co/Ta multilayer films. <i>Applied Physics Letters</i> , 2018 , 113, 192403	3.4	28
52	MXene-Derived Ferroelectric Crystals. <i>Advanced Materials</i> , 2019 , 31, e1806860	24	26
51	Modifying Temperature Stability of (K,Na)NbO3 Ceramics through Phase Boundary. <i>Advanced Electronic Materials</i> , 2018 , 4, 1800205	6.4	21
50	Direct observation of cation distributions of ideal inverse spinel CoFeO nanofibres and correlated magnetic properties. <i>Nanoscale</i> , 2017 , 9, 7493-7500	7.7	20
49	Nanoscale characterisation and magnetic properties of Co81Cu19/Cu multilayer nanowires. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 85-93	7.1	20
48	Synthesis of three-dimensional free-standing WSe2/C hybrid nanofibers as anodes for high-capacity lithium/sodium ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 19898-19908	13	18
47	Electric field induced magnetic anisotropy transition from fourfold to twofold symmetry in (001) 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3/Fe0.86Si0.14 epitaxial heterostructures. <i>Applied Physics Letters</i> , 2016 , 108, 152401	3.4	18
46	Spin Filtering in Epitaxial Spinel Films with Nanoscale Phase Separation. ACS Nano, 2017, 11, 5011-5019	9 16.7	16
45	Bimagnetic h-Co/h-CoO nanotetrapods: preparation, nanoscale characterization, three-dimensional architecture and their magnetic properties. <i>Nanoscale</i> , 2014 , 6, 13710-8	7.7	16
44	Electron Beam Lithography of Magnetic Skyrmions. <i>Advanced Materials</i> , 2020 , 32, e2003003	24	14
43	Wafer-scale single-crystal monolayer graphene grown on sapphire substrate <i>Nature Materials</i> , 2022 ,	27	13
42	Realization of the welding of individual TiO2 semiconductor nano-objects using a novel 1D Au80Sn20 nanosolder. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 11311-11317	7.1	12
41	Carbon black-supported FMNII (FM = Fe, Co, and Ni) single-atom catalysts synthesized by the self-catalysis of oxygen-coordinated ferrous metal atoms. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 13	166-13	1 72
40	Nanoscale characterization of 1D Sn-3.5Ag nanosolders and their application into nanowelding at the nanoscale. <i>Nanotechnology</i> , 2014 , 25, 425301	3.4	12
39	Ferroelectric Field Effect Tuned Giant Electroresistance in LaSrMnO/BaTiO Heterostructures. <i>ACS Applied Materials & District Materials</i>	9.5	12
38	Phase transformation of Sn-based nanowires under electron beam irradiation. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 5389-5397	7.1	11

37	Topological Hall Effect in Traditional Ferromagnet Embedded with Black-Phosphorus-Like Bismuth Nanosheets. <i>ACS Applied Materials & Embedded</i> , 12, 25135-25142	9.5	11
36	Critical behavior of intercalated quasi-van der Waals ferromagnet Fe0.26TaS2. <i>Physical Review Materials</i> , 2019 , 3,	3.2	11
35	Direct imaging of an inhomogeneous electric current distribution using the trajectory of magnetic half-skyrmions. <i>Science Advances</i> , 2020 , 6, eaay1876	14.3	10
34	Understanding the Origin of Selective Reduction of CO to CO on Single-Atom Nickel Catalyst. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 511-518	3.4	10
33	Mobility-Fluctuation-Controlled Linear Positive Magnetoresistance in 2D Semiconductor BiOSe Nanoplates. <i>ACS Nano</i> , 2020 , 14, 11319-11326	16.7	10
32	One-step growth of reduced graphene oxide on arbitrary substrates. <i>Carbon</i> , 2019 , 144, 457-463	10.4	10
31	Deformation of NBl-type skyrmions revealed by Lorentz transmission electron microscopy. <i>Applied Physics Letters</i> , 2020 , 116, 142402	3.4	9
30	Evolution of cellulose acetate to monolayer graphene. <i>Carbon</i> , 2021 , 174, 24-35	10.4	9
29	Chiral Helimagnetism and One-Dimensional Magnetic Solitons in a Cr-Intercalated Transition Metal Dichalcogenide. <i>Advanced Materials</i> , 2021 , 33, e2101131	24	9
28	Dynamic observation of Joule heating-induced structural and domain transformation in smart shape-memory alloy. <i>Acta Materialia</i> , 2020 , 186, 223-228	8.4	8
27	Ultraflexible and Malleable Fe/BaTiO3 Multiferroic Heterostructures for Functional Devices. <i>Advanced Functional Materials</i> , 2021 , 31, 2009376	15.6	8
26	A Coulomb explosion strategy to tailor the nano-architecture of EMoO nanobelts and an insight into its intrinsic mechanism. <i>Nanoscale</i> , 2018 , 10, 8285-8291	7.7	7
25	Effects of interfacial transition layers on the electrical properties of individual Fe30Co61Cu9/Cu multilayer nanowires. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 259-265	7.1	7
24	Formation and magnetic-field stability of magnetic dipole skyrmions and bubbles in a ferrimagnet. <i>Applied Physics Letters</i> , 2020 , 116, 142404	3.4	6
23	Intensified Energy Storage in High-Voltage Nanohybrid Supercapacitors the Efficient Coupling between TiNbO/Holey-rGO Nanoarchitectures and Ionic Liquid-Based Electrolytes. <i>ACS Applied Materials & Description of the English ACS Applied Materials & Description of the English ACS Applied Materials (Control of the English ACS Applied Materials (</i>	9.5	6
22	Gumdrop-cake-like CuNi/C nanofibers with tunable microstructure for microwave absorbing application. <i>Ceramics International</i> , 2020 , 46, 11406-11415	5.1	5
21	Thermally induced shape modification of free-standing nanostructures for advanced functionalities. <i>Scientific Reports</i> , 2013 , 3, 2429	4.9	5
20	Synergetic Contributions in Phase Boundary Engineering to the Piezoelectricity of Potassium Sodium Niobate Lead-Free Piezoceramics. <i>ACS Applied Materials & Samp; Interfaces</i> , 2020 , 12, 39455-3946	9·5	5

19	Direct imaging of dopant sites in rare-earth element-doped permanent magnet and correlated magnetism origin. <i>Nanoscale</i> , 2019 , 11, 4385-4393	7.7	4	
18	Atomic Self-reconstruction of Catalyst Dominated Growth Mechanism of Graphite Structures. <i>ChemCatChem</i> , 2020 , 12, 1316-1324	5.2	4	
17	Synergistic effect of hierarchical nanopores in Co-doped cobalt oxide 3D flowers for electrochemical energy storage <i>RSC Advances</i> , 2020 , 10, 43825-43833	3.7	3	
16	Thermally induced generation and annihilation of magnetic chiral skyrmion bubbles and achiral bubbles in MnNiCa magnets. <i>Applied Physics Letters</i> , 2020 , 116, 132402	3.4	3	
15	Interfacial scattering effect on anisotropic magnetoresistance and anomalous Hall effect in Ta/Fe multilayers. <i>AIP Advances</i> , 2018 , 8, 055813	1.5	2	
14	Electrodeposited CoCu/Cu meta-conductor with suppressed skin effect for next generation radio frequency electronics. <i>Journal of Alloys and Compounds</i> , 2019 , 778, 156-162	5.7	2	
13	Ferroelectrics: MXene-Derived Ferroelectric Crystals (Adv. Mater. 14/2019). <i>Advanced Materials</i> , 2019 , 31, 1970102	24	1	
12	Interfacial Roughness Facilitated by Dislocation and a Metal-Fuse Resistor Fabricated Using a Nanomanipulator. <i>ACS Applied Materials & Manomanipulator</i> , 12, 24442-24449	9.5	1	
11	Self-assembled Epitaxial Ferroelectric Oxide Nano-spring with Super-scalability <i>Advanced Materials</i> , 2022 , e2108419	24	1	
10	Superposition of Emergent Monopole and Antimonopole in CoTb Thin Films. <i>Physical Review Letters</i> , 2021 , 127, 217201	7.4	1	
9	Magnetotransport Mechanism of Individual Nanostructures Direct Magnetoresistance Measurement SEM. ACS Applied Materials & Interfaces, 2020, 12, 39798-39806	9.5	1	
8	Ionic Liquid Gating and Phase Transition Induced Semiconducting to Metallic Transition in LaSrMnO/BaTiO Heterostructures. <i>ACS Applied Materials & District Research</i> , 12, 43257-43265	9.5	1	
7	Optimization of microwave absorption properties of C/NiP microfiber composites. <i>Ceramics International</i> , 2021 , 47, 7937-7945	5.1	1	
6	Multiferroic Heterostructures: Ultraflexible and Malleable Fe/BaTiO3 Multiferroic Heterostructures for Functional Devices (Adv. Funct. Mater. 16/2021). <i>Advanced Functional Materials</i> , 2021 , 31, 2170111	15.6	1	
5	Cation ratio and oxygen defects for engineering the magnetic transition of monodisperse nonstoichiometric zinc ferrite nanoparticles. <i>Science China Materials</i> , 2021 , 64, 2017-2028	7.1	1	
4	Interfacial Control via Reversible Ionic Motion in Battery-Like Magnetic Tunnel Junctions. <i>Advanced Electronic Materials</i> , 2021 , 7, 2100512	6.4	1	
3	Quantifying the Dzyaloshinskii-Moriya Interaction Induced by the Bulk Magnetic Asymmetry <i>Physical Review Letters</i> , 2022 , 128, 167202	7.4	1	
2	Achieving C/CuO microfiber composites with efficient microwave absorbing performance at low thickness. <i>Journal of Materials Science: Materials in Electronics</i> ,1	2.1	O	

Self-Assembled Epitaxial Ferroelectric Oxide Nanospring with Super-Scalability (Adv. Mater. 13/2022). *Advanced Materials*, **2022**, 34, 2270103

24