
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5423941/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RILEM TC 258-AAA Round Robin Test: Alkali release from aggregates and petrographic analysis. Critical review of the test method AAR-8. Materiales De Construccion, 2022, 72, e279.	0.2	1
2	Alternative supplementary cementitious materials for sustainable concrete structures: a review on characterization and properties. Waste and Biomass Valorization, 2021, 12, 1219-1236.	1.8	37
3	Recommendation of RILEM TC 258-AAA: RILEM AAR-8: determination of potential releasable alkalis by aggregates in concrete. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	1.3	6
4	Valorization of Coal Fly Ash as a Stabilizer for the Development of Ni/CaO-Based Bifunctional Material. ACS Sustainable Chemistry and Engineering, 2020, 8, 3885-3895.	3.2	20
5	Alkali-silica reaction in alkali-activated combined slag and fly ash concretes: The tempering effect of fly ash on expansion and cracking. Construction and Building Materials, 2020, 251, 118968.	3.2	10
6	The Effect of Wood Ash as a Partial Cement Replacement Material for Making Wood-Cement Panels. Materials, 2019, 12, 2766.	1.3	24
7	Influence of added water and fly ash content on the characteristics, properties and early-age cracking sensitivity of alkali-activated slag/fly ash concrete cured at ambient temperature. Construction and Building Materials, 2018, 171, 929-941.	3.2	24
8	Evaluation of the concrete prisms test method for assessing the potential alkali-aggregate reactivity of recycled concrete aggregates. Cement and Concrete Research, 2018, 104, 25-36.	4.6	33
9	Reactivity tests for supplementary cementitious materials: RILEM TC 267-TRM phase 1. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	1.3	144
10	The application of a new oxidation mortar bar test to mixtures containing different cementing systems. Construction and Building Materials, 2018, 173, 775-785.	3.2	9
11	Atmospheric Carbon Mineralization in an Industrial-Scale Chrysotile Mining Waste Pile. Environmental Science & Technology, 2018, 52, 8050-8057.	4.6	13
12	Validation of the alkali contribution by aggregates to the concrete pore solution. Cement and Concrete Research, 2017, 98, 10-23.	4.6	21
13	Stress-relaxation of crystalline alkali-silica reaction products: Characterization by micro- and nanoindentation and simplified modeling. Construction and Building Materials, 2017, 148, 455-464.	3.2	15
14	Determination of the pH and the free alkali metal content in the pore solution of concrete: Review and experimental comparison. Cement and Concrete Research, 2017, 96, 13-26.	4.6	173
15	Effect of alkali release by aggregates on alkali-silica reaction. Construction and Building Materials, 2017, 157, 263-276.	3.2	20
16	Passive Mineral Carbonation of Mg-rich Mine Wastes by Atmospheric CO2. Energy Procedia, 2017, 114, 6083-6086.	1.8	19
17	Development of a quick screening staining test for detecting the oxidation potential of iron sulfide-bearing aggregates for use in concrete. Cement and Concrete Research, 2016, 81, 49-58.	4.6	7
18	Quantitative assessment of the oxidation potential of sulfide-bearing aggregates in concrete using an oxygen consumption test. Cement and Concrete Composites, 2016, 67, 93-100.	4.6	17

#	Article	IF	CITATIONS
19	Use of Damage Rating Index to Quantify Alkali-Silica Reaction Damage in Concrete: Fine versus Coarse Aggregate. ACI Materials Journal, 2016, 113, .	0.3	15
20	Evaluation Protocol for Concrete Aggregates Containing Iron Sulfide Minerals. ACI Materials Journal, 2016, 113, .	0.3	4
21	Physical characterization methods for supplementary cementitious materials. Materials and Structures/Materiaux Et Constructions, 2015, 48, 3675-3686.	1.3	40
22	A new accelerated mortar bar test to assess the potential deleterious effect of sulfide-bearing aggregate in concrete. Cement and Concrete Research, 2015, 73, 96-110.	4.6	25
23	Determination of particle size, surface area, and shape of supplementary cementitious materials by different techniques. Materials and Structures/Materiaux Et Constructions, 2015, 48, 3687-3701.	1.3	95
24	Reliable quantification of AAR damage through assessment of the Damage Rating Index (DRI). Cement and Concrete Research, 2015, 67, 74-92.	4.6	95
25	Resistance of blended cement pastes subjected to organic acids: Quantification of anhydrous and hydrated phases. Cement and Concrete Composites, 2014, 45, 89-101.	4.6	21
26	Leaching of Cementitious Materials by Pure Water and Strong Acids (HCl and HNO3). RILEM State-of-the-Art Reports, 2013, , 91-112.	0.3	18
27	Attack of Cementitious Materials by Organic Acids in Agricultural and Agrofood Effluents. RILEM State-of-the-Art Reports, 2013, , 131-173.	0.3	12
28	CO2-depleted warm air venting from chrysotile milling waste (Thetford Mines, Canada): Evidence for in-situ carbon capture from the atmosphere. Geology, 2012, 40, 275-278.	2.0	59
29	Supplementary Cementitious Materials for Concrete: Characterization Needs. Materials Research Society Symposia Proceedings, 2012, 1488, 8.	0.1	39
30	Mineralogical and chemical assessment of concrete damaged by the oxidation of sulfide-bearing aggregates: Importance of thaumasite formation on reaction mechanisms. Cement and Concrete Research, 2012, 42, 1336-1347.	4.6	48
31	The effect of SCMs and curing time on resistance of mortars subjected to organic acids. Cement and Concrete Research, 2012, 42, 205-214.	4.6	41
32	The effect of SCMs on the corrosion of rebar embedded in mortars subjected to an acetic acid attack. Cement and Concrete Research, 2012, 42, 467-475.	4.6	14
33	Carbon Sequestration Kinetic and Storage Capacity of Ultramafic Mining Waste. Environmental Science & Technology, 2011, 45, 9413-9420.	4.6	97
34	Microstructure Study of Early In Situ Reaction of Fly Ash Geopolymer Observed by Environmental Scanning Electron Microscopy (ESEM). Waste and Biomass Valorization, 2010, 1, 367-377.	1.8	34
35	Processing of electron microprobe data from the analysis of altered cementitious materials. Cement and Concrete Research, 2009, 39, 929-935.	4.6	25
36	Long-term neutralisation potential of red mud bauxite with brine amendment for the neutralisation of acidic mine tailings. Applied Geochemistry, 2007, 22, 2326-2333.	1.4	38

#	Article	IF	CITATIONS
37	Investigation of stabilization/solidification for treatment of electric arc furnace dust: Dynamic leaching of monolithic specimens. Cement and Concrete Research, 2007, 37, 1639-1646.	4.6	18
38	Degradation of cement pastes by organic acids. Materials and Structures/Materiaux Et Constructions, 2007, 40, 341-354.	1.3	63
39	Using red mud bauxite for the neutralization of acid mine tailings: a column leaching test. Canadian Geotechnical Journal, 2006, 43, 1167-1179.	1.4	30
40	Stabilization of electric arc furnace dust by the use of cementitious materials: lonic competition and long-term leachability. Cement and Concrete Research, 2006, 36, 1628-1634.	4.6	17
41	Characterization and leachability of electric arc furnace dust made from remelting of stainless steel. Journal of Hazardous Materials, 2006, 135, 156-164.	6.5	58
42	Remediation of electric arc furnace dust leachate by the use of cementitious materials: A column-leaching test. Diqiu Huaxue, 2006, 25, 99-99.	0.5	1
43	LEACHING OF CEMENT PASTES EXPOSED TO THE ACTION OF MANURE ORGANIC ACIDS: COMPARISION OF THE RELATIVE AGGRESSIVENESS OF THE DIFFERENT ACIDS. , 2005, , 601-610.		1
44	Accelerated tests of hardened cement pastes alteration by organic acids: analysis of the pH effect. Cement and Concrete Research, 2005, 35, 155-166.	4.6	101
45	Immobilization of chromium (VI) evaluated by binding isotherms for ground granulated blast furnace slag and ordinary Portland cement. Cement and Concrete Research, 2005, 35, 2322-2332.	4.6	52
46	Attack of cement pastes exposed to organic acids in manure. Cement and Concrete Composites, 2005, 27, 898-909.	4.6	88
47	Column Leaching Test to Evaluate the Use of Alkaline Industrial Wastes to Neutralize Acid Mine Tailings. Journal of Environmental Engineering, ASCE, 2005, 131, 1221-1229.	0.7	21
48	Effectiveness of Covers and Liners Made of Red Mud Bauxite and/or Cement Kiln Dust for Limiting Acid Mine Drainage. Journal of Environmental Engineering, ASCE, 2005, 131, 1230-1235.	0.7	20
49	Attaques chimique et biologique des effluents agricoles et agroalimentaires sur les matériaux cimentaires. Materiaux Et Techniques, 2005, 93, s.111-s.121.	0.3	13
50	A reply to the discussion by Mingshu Tang of the paper "Laboratory assessment of alkali contribution by aggregates to concrete and application to concrete structures affected by alkali–silica reactivity― Cement and Concrete Research, 2004, 34, 903-904.	4.6	5
51	Evaluation of the degree of Cr ions immobilization by different binders. Cement and Concrete Research, 2004, 34, 1173-1177.	4.6	34
52	Cement pastes alteration by liquid manure organic acids: chemical and mineralogical characterization. Cement and Concrete Research, 2004, 34, 1823-1835.	4.6	73
53	Laboratory and field investigations of the influence of sodium chloride on alkali–silica reactivity. Cement and Concrete Research, 2003, 33, 77-84.	4.6	26
54	Effect of the cement chemistry and the sample size on ASR expansion of concrete exposed to salt. Cement and Concrete Research, 2003, 33, 629-634.	4.6	9

#	Article	IF	CITATIONS
55	Ephemeral acid mine drainage at the Montalbion silver mine, north Queensland. Australian Journal of Earth Sciences, 2003, 50, 797-809.	0.4	68
56	Neutralisation of acid mine drainage with alkaline industrial residues: laboratory investigation using batch-leaching tests. Applied Geochemistry, 2003, 18, 1197-1213.	1.4	122
57	Établissement d'une méthode de caractérisation minéralogique décrivant les sols contaminés par le plomb. Canadian Geotechnical Journal, 2003, 40, 731-741.	² 1.4	5
58	CAPACITY OF CHROME IONS FIXATION BY BLAST FURNACE SLAG. , 2003, , 335-344.		0
59	Influence of the nature of organic compounds on fine soil stabilization with cement. Canadian Geotechnical Journal, 2002, 39, 535-546.	1.4	226
60	A simple and fast screening test to detect soils polluted by lead. Environmental Pollution, 2002, 118, 285-296.	3.7	41
61	Laboratory assessment of alkali contribution by aggregates to concrete and application to concrete structures affected by alkali–silica reactivity. Cement and Concrete Research, 2002, 32, 1215-1227.	4.6	104
62	Title is missing!. Water, Air, and Soil Pollution, 2002, 135, 105-130.	1.1	40
63	Prediction of Metal Removal Efficiency from Contaminated Soils by Physical Methods. Journal of Environmental Engineering, ASCE, 2001, 127, 348-358.	0.7	47
64	Long-term effectiveness of supplementary cementing materials against alkali–silica reaction. Cement and Concrete Research, 2001, 31, 1057-1063.	4.6	83
65	Le mûrissement à l'eau de chaux des échantillons de béton en laboratoire est-il adapté au cas des bétons contenant des cendres volantes?. Canadian Journal of Civil Engineering, 2000, 27, 1073-1081.	0.7	0
66	Lime treatment of fly ash: characterization of leachate composition and solid/water reactions. Waste Management, 1999, 19, 221-231.	3.7	41
67	Determining controls on element concentrations in cement kiln dust leachate. Waste Management, 1998, 18, 339-350.	3.7	28
68	Measurement and prediction of portlandite solubility in alkali solutions. Cement and Concrete Research, 1995, 25, 1043-1053.	4.6	96
69	Effect of supplementary cementing materials on the composition of cement hydration products. Advanced Cement Based Materials, 1995, 2, 43-52.	0.4	65
70	Why the Accelerated Mortar Bar Method ASTM C 1260 is Reliable for Evaluating the Effectiveness of Supplementary Cementing Materials in Suppressing Expansion Due to Alkali-Silica Reactivity. Cement, Concrete and Aggregates, 1995, 17, 26-34.	0.1	38
71	The effectiveness of supplementary cementing materials in suppressing expansion due to ASR: Another look at the reaction mechanisms part 1: Concrete expansion and portlandite depletion. Cement and Concrete Research, 1994, 24, 73-82.	4.6	60
72	Evaluation of the validity of the pore solution expression method from hardened cement pastes and mortars. Cement and Concrete Research, 1994, 24, 456-462.	4.6	58

#	Article	IF	CITATIONS
73	A reply to a discussion by S. Chatterji of the paper "The effectiveness of supplementary cementing materials on suppressing expansion due to ASR. part 1. Concrete expansion and portland depletionâ€ Cement and Concrete Research, 1994, 24, 1574-1576.	4.6	0
74	The effectiveness of supplementary cementing materials in suppressing expansion due to ASR: Another look at the reaction mechanisms part 2: Pore solution chemistry. Cement and Concrete Research, 1994, 24, 221-230.	4.6	126
75	A reply to a discussion by S. Chatterji of the paper "The effectiveness of supplementary cementing materials in suppresssing expansion due to asr. part 2. pore solution chemistryâ€: Cement and Concrete Research, 1994, 24, 1579-1581.	4.6	2
76	Does silica fume merely postpone expansion due to alkali-aggregate reactivity?. Construction and Building Materials, 1993, 7, 137-143.	3.2	25