Ewa Jaworska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5423928/publications.pdf Version: 2024-02-01

FWA LAWODSKA

#	Article	IF	CITATIONS
1	Implementation of a Chlorideâ€selective Electrode Into a Closed Bipolar Electrode System with Fluorimetric Readout. Electroanalysis, 2020, 32, 812-819.	2.9	9
2	A potentiometric sensor based on modified electrospun PVDF nanofibers – towards 2D ion-selective membranes. Analyst, The, 2020, 145, 5594-5602.	3.5	9
3	Si-corrole-based fluoride fluorometric turn-on sensor. Journal of Porphyrins and Phthalocyanines, 2020, 24, 929-937.	0.8	8
4	Multiwalled Carbon Nanotubes–Poly(3-octylthiophene-2,5-diyl) Nanocomposite Transducer for Ion-Selective Electrodes: Raman Spectroscopy Insight into the Transducer/Membrane Interface. Analytical Chemistry, 2019, 91, 9010-9017.	6.5	43
5	Self-Powered Cascade Bipolar Electrodes with Fluorimetric Readout. Analytical Chemistry, 2019, 91, 15525-15531.	6.5	15
6	Advantages of Amperometric Readout Mode of Ionâ€selective Electrodes under Potentiostatic Conditions. Electroanalysis, 2019, 31, 343-349.	2.9	17
7	Using Lipophilic Membrane for Enhancedâ€Performance Aqueous Gated Carbon Nanotube Field Effect Transistors. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700993.	1.8	4
8	Fate of Poly(3-octylthiophene) Transducer in Solid Contact Ion-Selective Electrodes. Analytical Chemistry, 2018, 90, 2625-2630.	6.5	36
9	Electrochemical Properties of Polypyrrole Nanoparticles – The Role of Doping Ions and Synthesis Medium. Electroanalysis, 2018, 30, 716-726.	2.9	16
10	All-solid-state paper based potentiometric potassium sensors containing cobalt(II) porphyrin/cobalt(III) corrole in the transducer layer. Sensors and Actuators B: Chemical, 2018, 277, 306-311.	7.8	25
11	Ambient Processed, Water-Stable, Aqueous-Gated sub 1 V n-type Carbon Nanotube Field Effect Transistor. Scientific Reports, 2018, 8, 11386.	3.3	13
12	Introducing Cobalt(II) Porphyrin/Cobalt(III) Corrole Containing Transducers for Improved Potential Reproducibility and Performance of All-Solid-State Ion-Selective Electrodes. Analytical Chemistry, 2017, 89, 7107-7114.	6.5	52
13	Polypyrrole Nanoparticles Based Disposable Potentiometric Sensors. Electroanalysis, 2017, 29, 2766-2772.	2.9	19
14	Fluorescent Polypyrrole Nanospheres – Synthesis and Properties of "Wireless―Redox Probes. Electroanalysis, 2017, 29, 2167-2176.	2.9	2
15	Polypyrrole Nanospheres – Electrochemical Properties and Application as a Solid Contact in Ionâ€selective Electrodes. Electroanalysis, 2017, 29, 123-130.	2.9	19
16	Optimizing Carbon Nanotubes Dispersing Agents from the Point of View of Ionâ€selective Membrane Based Sensors Performance – Introducing Carboxymethylcellulose as Dispersing Agent for Carbon Nanotubes Based Solid Contacts. Electroanalysis, 2016, 28, 947-953.	2.9	16
17	Carbon Nanotubes-Based Potentiometric Bio-Sensors for Determination of Urea. Chemosensors, 2015, 3, 200-210.	3.6	8
18	Flexible Electrolyte-Gated Ion-Selective Sensors Based on Carbon Nanotube Networks. IEEE Sensors Journal, 2015, 15, 3127-3134.	4.7	31

Ewa Jaworska

#	Article	IF	CITATIONS
19	Spray-coated all-solid-state potentiometric sensors. Analyst, The, 2014, 139, 6010-6015.	3.5	23
20	Simple and disposable potentiometric sensors based on graphene or multi-walled carbon nanotubes – carbon–plastic potentiometric sensors. Analyst, The, 2013, 138, 2363.	3.5	46
21	Critical assessment of graphene as ion-to-electron transducer for all-solid-state potentiometric sensors. Talanta, 2012, 97, 414-419.	5.5	36
22	Non-covalently functionalized graphene for the potentiometric sensing of zinc ions. Analyst, The, 2012, 137, 1895.	3.5	21
23	Lowering the Resistivity of Polyacrylate Ion-Selective Membranes by Platinum Nanoparticles Addition. Analytical Chemistry, 2011, 83, 438-445.	6.5	59
24	Gold nanoparticles solid contact for ion-selective electrodes of highly stable potential readings. Talanta, 2011, 85, 1986-1989.	5.5	83
25	Ion-selective membrane plasticizer leakage in all-solid-state electrodes – an unobvious way to improve potential readings stability in time. Analyst, The, 0, , .	3.5	1