
Martin Clift

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/542371/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deducing the cellular mechanisms associated with the potential genotoxic impact of gold and silver engineered nanoparticles upon different lung epithelial cell lines inÂvitro. Nanotoxicology, 2022, , 1-21.	1.6	3
2	The Road to Achieving the European Commission's Chemicals Strategy for Nanomaterial Sustainability—A PATROLS Perspective on New Approach Methodologies. Small, 2022, 18, e2200231.	5.2	9
3	The influence of exposure approaches to <i>inÂvitro</i> lung epithelial barrier models to assess engineered nanomaterial hazard. Nanotoxicology, 2022, 16, 114-134.	1.6	6
4	In Vitro Primaryâ€Indirect Genotoxicity in Bronchial Epithelial Cells Promoted by Industrially Relevant Fewâ€Layer Graphene. Small, 2021, 17, e2002551.	5.2	21
5	Few-layer graphene induces both primary and secondary genotoxicity in epithelial barrier models in vitro. Journal of Nanobiotechnology, 2021, 19, 24.	4.2	21
6	Opportunities and Challenges for Integrating New In Vitro Methodologies in Hazard Testing and Risk Assessment. Small, 2021, 17, e2006298.	5.2	11
7	Nonâ€Animal Strategies for Toxicity Assessment of Nanoscale Materials: Role of Adverse Outcome Pathways in the Selection of Endpoints. Small, 2021, 17, e2007628.	5.2	27
8	Advanced In Vitro Models for Replacement of Animal Experiments. Small, 2021, 17, e2101474.	5.2	6
9	Manipulating bovine granulosa cell energy metabolism limits inflammation. Reproduction, 2021, 161, 499-512.	1.1	6
10	Towards More Predictive, Physiological and Animal-free <i>In Vitro</i> Models: Advances in Cell and Tissue Culture 2020 Conference Proceedings. ATLA Alternatives To Laboratory Animals, 2021, 49, 93-110.	0.7	6
11	Understanding the impact of more realistic low-dose, prolonged engineered nanomaterial exposure on genotoxicity using 3D models of the human liver. Journal of Nanobiotechnology, 2021, 19, 193.	4.2	15
12	Inter-laboratory variability of A549 epithelial cells grown under submerged and air-liquid interface conditions. Toxicology in Vitro, 2021, 75, 105178.	1.1	26
13	Overview of Nanotoxicology in Humans and the Environment; Developments, Challenges and Impacts. Molecular and Integrative Toxicology, 2021, , 1-40.	0.5	0
14	Chemically Programmed Vaccines: Iron Catalysis in Nanoparticles Enhances Combination Immunotherapy and Immunotherapy-Promoted Tumor Ferroptosis. IScience, 2020, 23, 101499.	1.9	33
15	An Alternative Perspective towards Reducing the Risk of Engineered Nanomaterials to Human Health. Small, 2020, 16, e2002002.	5.2	17
16	Adaptation of the <i>in vitro</i> micronucleus assay for genotoxicity testing using 3D liver models supporting longer-term exposure durations. Mutagenesis, 2020, 35, 319-330.	1.0	29
17	Fibrous Material Science: Extensive and Persistent. Fibers, 2020, 8, 16.	1.8	1
18	Advanced 3D Liver Models for In vitro Genotoxicity Testing Following Long-Term Nanomaterial Exposure. Journal of Visualized Experiments, 2020, , .	0.2	14

#	Article	IF	CITATIONS
19	Nanomaterials and Innate Immunity: A Perspective of the Current Status in Nanosafety. Chemical Research in Toxicology, 2020, 33, 1061-1073.	1.7	34
20	Uterine infection alters the transcriptome of the bovine reproductive tract three months later. Reproduction, 2020, 160, 93-107.	1.1	18
21	Assessment of the potential for in-plume sulphur dioxide gas-ash interactions to influence the respiratory toxicity of volcanic ash. Environmental Research, 2019, 179, 108798.	3.7	12
22	Polymer-Coated Gold Nanospheres Do Not Impair the Innate Immune Function of Human B Lymphocytes <i>in Vitro</i> . ACS Nano, 2019, 13, 6790-6800.	7.3	23
23	Cellular Defense Mechanisms Following Nanomaterial Exposure: A Focus on Oxidative Stress and Cytotoxicity. Nanoscience and Technology, 2019, , 243-254.	1.5	2
24	Profibrotic Activity of Multiwalled Carbon Nanotubes Upon Prolonged Exposures in Different Human Lung Cell Types. Applied in Vitro Toxicology, 2019, 5, 47-61.	0.6	23
25	In vitro detection of in vitro secondary mechanisms of genotoxicity induced by engineered nanomaterials. Particle and Fibre Toxicology, 2019, 16, 8.	2.8	40
26	Quantification of Carbon Nanotube Doses in Adherent Cell Culture Assays Using UV-VIS-NIR Spectroscopy. Nanomaterials, 2019, 9, 1765.	1.9	11
27	Respiratory hazard assessment of combined exposure to complete gasoline exhaust and respirable volcanic ash in a multicellular human lung model at the air-liquid interface. Environmental Pollution, 2018, 238, 977-987.	3.7	21
28	Current characterization methods for cellulose nanomaterials. Chemical Society Reviews, 2018, 47, 2609-2679.	18.7	690
29	Biological response of an in vitro human 3D lung cell model exposed to brake wear debris varies based on brake pad formulation. Archives of Toxicology, 2018, 92, 2339-2351.	1.9	26
30	A novel technique to determine the cell type specific response within an in vitro co-culture model via multi-colour flow cytometry. Scientific Reports, 2017, 7, 434.	1.6	17
31	Human Asthmatic Bronchial Cells Are More Susceptible to Subchronic Repeated Exposures of Aerosolized Carbon Nanotubes At Occupationally Relevant Doses Than Healthy Cells. ACS Nano, 2017, 11, 7615-7625.	7.3	42
32	Aligning nanotoxicology with the 3Rs: What is needed to realise the short, medium and long-term opportunities?. Regulatory Toxicology and Pharmacology, 2017, 91, 257-266.	1.3	36
33	Critical review of the current and future challenges associated with advanced <i>in vitro</i> systems towards the study of nanoparticle (secondary) genotoxicity. Mutagenesis, 2017, 32, 233-241.	1.0	75
34	The 3Rs as a framework to support a 21st century approach for nanosafety assessment. Nano Today, 2017, 12, 10-13.	6.2	65
35	Characteristics and properties of nano-LiCoO2 synthesized by pre-organized single source precursors: Li-ion diffusivity, electrochemistry and biological assessment. Journal of Nanobiotechnology, 2017, 15, 58.	4.2	11
36	Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge. Environmental Health Perspectives, 2017, 125, 106002.	2.8	274

#	Article	IF	CITATIONS
37	Elucidating the Potential Biological Impact of Cellulose Nanocrystals. Fibers, 2016, 4, 21.	1.8	47
38	Nanofibers: Friend or Foe?. Fibers, 2016, 4, 25.	1.8	2
39	A critical review of the current knowledge regarding the biological impact of nanocellulose. Journal of Nanobiotechnology, 2016, 14, 78.	4.2	184
40	Decoupling the shape parameter to assess gold nanorod uptake by mammalian cells. Nanoscale, 2016, 8, 16416-16426.	2.8	23
41	Combined exposure of diesel exhaust particles and respirable Soufrière Hills volcanic ash causes a (pro-)inflammatory response in an in vitro multicellular epithelial tissue barrier model. Particle and Fibre Toxicology, 2016, 13, 67.	2.8	34
42	Synthesis, characterization, antibacterial activity and cytotoxicity of hollow TiO ₂ -coated CeO ₂ nanocontainers encapsulating silver nanoparticles for controlled silver release. Journal of Materials Chemistry B, 2016, 4, 1166-1174.	2.9	21
43	Assessment of a panel of interleukin-8 reporter lung epithelial cell lines to monitor the pro-inflammatory response following zinc oxide nanoparticle exposure under different cell culture conditions. Particle and Fibre Toxicology, 2015, 12, 29.	2.8	29
44	A biological perspective toward the interaction of theranostic nanoparticles with the bloodstream ââ,¬â€œ what needs to be considered?. Frontiers in Chemistry, 2015, 3, 7.	1.8	8
45	Uptake efficiency of surface modified gold nanoparticles does not correlate with functional changes and cytokine secretion in human dendritic cells in vitro. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 633-644.	1.7	78
46	Integrating silver compounds and nanoparticles into ceria nanocontainers for antimicrobial applications. Journal of Materials Chemistry B, 2015, 3, 1760-1768.	2.9	26
47	Fate of Cellulose Nanocrystal Aerosols Deposited on the Lung Cell Surface In Vitro. Biomacromolecules, 2015, 16, 1267-1275.	2.6	65
48	Repeated exposure to carbon nanotube-based aerosols does not affect the functional properties of a 3D human epithelial airway model. Nanotoxicology, 2015, 9, 983-993.	1.6	46
49	Uptake and Intracellular Fate of Peptide Surface-Functionalized Silica Hybrid Magnetic Nanoparticles In Vitro. Particle and Particle Systems Characterization, 2015, 32, 188-196.	1.2	3
50	Mimicking exposures to acute and lifetime concentrations of inhaled silver nanoparticles by two different in vitro approaches. Beilstein Journal of Nanotechnology, 2014, 5, 1357-1370.	1.5	55
51	In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far?. Beilstein Journal of Nanotechnology, 2014, 5, 1477-1490.	1.5	130
52	Quantification of nanoparticles at the single-cell level: an overview about state-of-the-art techniques and their limitations. Nanomedicine, 2014, 9, 1885-1900.	1.7	60
53	An in vitro testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles. Particle and Fibre Toxicology, 2014, 11, 40.	2.8	91
54	A Comparative Study of Different In Vitro Lung Cell Culture Systems to Assess the Most Beneficial Tool for Screening the Potential Adverse Effects of Carbon Nanotubes. Toxicological Sciences, 2014, 137, 55-64.	1.4	65

#	Article	IF	CITATIONS
55	Metal ions in the context of nanoparticles toward biological applications. Current Opinion in Chemical Engineering, 2014, 4, 88-96.	3.8	28
56	Modeling Nanoparticle–Alveolar Epithelial Cell Interactions under Breathing Conditions Using Captive Bubble Surfactometry. Langmuir, 2014, 30, 4924-4932.	1.6	19
57	Polyvinyl Alcohol as a Biocompatible Alternative for the Passivation of Gold Nanorods. Angewandte Chemie - International Edition, 2014, 53, 12613-12617.	7.2	24
58	The Role of the Protein Corona in Fiber Structure-Activity Relationships. Fibers, 2014, 2, 187-210.	1.8	4
59	Exposure of silver-nanoparticles and silver-ions to lung cells in vitro at the air-liquid interface. Particle and Fibre Toxicology, 2013, 10, 11.	2.8	118
60	Surface charge of polymer coated SPIONs influences the serum protein adsorption, colloidal stability and subsequent cell interaction in vitro. Nanoscale, 2013, 5, 3723.	2.8	127
61	Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. Journal of the Royal Society Interface, 2013, 10, 20130396.	1.5	273
62	Can the Ames test provide an insight into nano-object mutagenicity? Investigating the interaction between nano-objects and bacteria. Nanotoxicology, 2013, 7, 1373-1385.	1.6	40
63	Gold Nanorods: Controlling Their Surface Chemistry and Complete Detoxification by a Two tep Place Exchange. Angewandte Chemie - International Edition, 2013, 52, 1934-1938.	7.2	87
64	Studying the Oxidative Stress Paradigm In Vitro: A Theoretical and Practical Perspective. Methods in Molecular Biology, 2013, 1028, 115-133.	0.4	6
65	Nanomaterials and the human lung: what is known and what must be deciphered to realise their potential advantages?. Swiss Medical Weekly, 2013, 143, w13758.	0.8	21
66	Investigating the potential for different scooter and car exhaust emissions to cause cytotoxic and (pro-)inflammatory responses to a 3D <i>inÂvitro</i> model of the human epithelial airway. Toxicological and Environmental Chemistry, 2012, 94, 164-180.	0.6	17
67	Quantum Dots: An Insight and Perspective of Their Biological Interaction and How This Relates to Their Relevance for Clinical Use. Theranostics, 2012, 2, 668-680.	4.6	53
68	Cerium dioxide nanoparticles can interfere with the associated cellular mechanistic response to diesel exhaust exposure. Toxicology Letters, 2012, 214, 218-225.	0.4	43
69	Pulmonary surfactant coating of multi-walled carbon nanotubes (MWCNTs) influences their oxidative and pro-inflammatory potential in vitro. Particle and Fibre Toxicology, 2012, 9, 17.	2.8	76
70	Amino covalent binding approach on iron oxide nanoparticle surface: Toward biological applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 415, 98-104.	2.3	15
71	Effects of flame made zinc oxide particles in human lung cells - a comparison of aerosol and suspension exposures. Particle and Fibre Toxicology, 2012, 9, 33.	2.8	45
72	Macroscopic to microscopic scales of particle dosimetry: from source to fate in the body. Air Quality, Atmosphere and Health, 2012, 5, 169-187.	1.5	25

#	Article	IF	CITATIONS
73	Carbon nanotubes: an insight into the mechanisms of their potential genotoxicity. Swiss Medical Weekly, 2012, 142, w13698.	0.8	48
74	Investigating the Interaction of Cellulose Nanofibers Derived from Cotton with a Sophisticated 3D Human Lung Cell Coculture. Biomacromolecules, 2011, 12, 3666-3673.	2.6	183
75	Minimal analytical characterization of engineered nanomaterials needed for hazard assessment in biological matrices. Nanotoxicology, 2011, 5, 1-11.	1.6	141
76	State of the art toxicological and microscopic assessment of biomedical nanocrystals on the lung in vitro. , 2011, , .		0
77	Nanotoxicology: a perspective and discussion of whether or not in vitro testing is a valid alternative. Archives of Toxicology, 2011, 85, 723-731.	1.9	116
78	A Brief Summary of Carbon Nanotubes Science and Technology: A Health and Safety Perspective. ChemSusChem, 2011, 4, 905-911.	3.6	37
79	The uptake and intracellular fate of a series of different surface coated quantum dots in vitro. Toxicology, 2011, 286, 58-68.	2.0	67
80	Endocytosis of Environmental and Engineered Micro―and Nanosized Particles. , 2011, 1, 1159-1174.		16
81	Quantum dot cytotoxicity <i>in vitro</i> : An investigation into the cytotoxic effects of a series of different surface chemistries and their core/shell materials. Nanotoxicology, 2011, 5, 664-674.	1.6	61
82	Intracellular imaging of nanoparticles: Is it an elemental mistake to believe what you see?. Particle and Fibre Toxicology, 2010, 7, 15.	2.8	71
83	An investigation into the potential for different surface-coated quantum dots to cause oxidative stress and affect macrophage cell signalling <i>in vitro</i> . Nanotoxicology, 2010, 4, 139-149.	1.6	66
84	The effects of serum on the toxicity of manufactured nanoparticles. Toxicology Letters, 2010, 198, 358-365.	0.4	83
85	Laser scanning microscopy combined with image restoration to analyse a 3D model of the human epithelial airway barrier. Swiss Medical Weekly, 2010, 140, w13060.	0.8	2
86	The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicology and Applied Pharmacology, 2008, 232, 418-427.	1.3	311
87	Air Pollution, Ultrafine and Nanoparticle Toxicology: Cellular and Molecular Interactions. IEEE Transactions on Nanobioscience, 2007, 6, 331-340.	2.2	299