Shuanglong Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5423649/publications.pdf

Version: 2024-02-01

471061 454577 1,834 30 17 30 citations h-index g-index papers 30 30 30 2324 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A stable Ag 3 PO 4 @g-C 3 N 4 hybrid core@shell composite with enhanced visible light photocatalytic degradation. Applied Catalysis B: Environmental, 2016, 183, 133-141.	10.8	466
2	A stable Ag3PO4@PANI core@shell hybrid: Enrichment photocatalytic degradation with π-π conjugation. Applied Catalysis B: Environmental, 2017, 201, 92-104.	10.8	285
3	Oil-in-water self-assembled Ag@AgCl QDs sensitized Bi2WO6: Enhanced photocatalytic degradation under visible light irradiation. Applied Catalysis B: Environmental, 2015, 164, 192-203.	10.8	239
4	Surface oxygen vacancy modified Bi2MoO6/MIL-88B(Fe) heterostructure with enhanced spatial charge separation at the bulk & mp; interface. Applied Catalysis B: Environmental, 2020, 268, 118740.	10.8	173
5	Photocatalytic nitrogen fixation: Oxygen vacancy modified novel micro-nanosheet structure Bi2O2CO3 with band gap engineering. Journal of Colloid and Interface Science, 2021, 583, 499-509.	5.0	87
6	Nano Ag@AgBr surface-sensitized Bi2WO6 photocatalyst: oil-in-water synthesis and enhanced photocatalytic degradation. Applied Surface Science, 2015, 324, 20-29.	3.1	65
7	Stable Cu2O@g-C3N4 core@shell nanostructures: Efficient visible-light photocatalytic hydrogen evolution. Materials Letters, 2015, 158, 278-281.	1.3	55
8	Dramatic activity of a Bi ₂ WO ₆ @g-C ₃ N ₄ photocatalyst with a core@shell structure. RSC Advances, 2015, 5, 99339-99346.	1.7	54
9	Enhanced visible light photocatalytic activity by Cu2O-coupled flower-like Bi2WO6 structures. Applied Surface Science, 2016, 364, 505-515.	3.1	53
10	Plasmon-enhanced photocatalytic properties of nano Ag@AgBr on single-crystalline octahedral Cu2O (1 1 1) microcrystals composite photocatalyst. Applied Surface Science, 2015, 330, 94-103.	3.1	38
11	Cu 2 O NPs/Bi 2 O 2 CO 3 flower-like complex photocatalysts with enhanced visible light photocatalytic degradation of organic pollutants. Catalysis Today, 2017, 297, 237-245.	2.2	38
12	Metal free and efficient photoelectrocatalytic removal of organic contaminants over g-C ₃ N ₄ nanosheet films decorated with carbon quantum dots. RSC Advances, 2017, 7, 56335-56343.	1.7	38
13	Oxygen vacancy modified Bi2MoO6/WO3 electrode with enhanced photoelectrocatalytic degradation activity toward RhB. Fuel, 2021, 285, 119171.	3.4	30
14	Rational design of Co nano-dots embedded three-dimensional graphene gel as multifunctional sulfur cathode for fast sulfur conversion kinetics. Journal of Energy Chemistry, 2021, 56, 132-140.	7.1	25
15	Facile hydrothermal synthesis of nanocomposite Ag@AgCl/K2Ti4O9 and photocatalytic degradation under visible light irradiation. Journal of Molecular Catalysis A, 2014, 383-384, 231-238.	4.8	21
16	Cu ₂ O NPs decorated BiPO ₄ photo-catalyst for enhanced organic contaminant degradation under visible light irradiation. RSC Advances, 2016, 6, 29202-29209.	1.7	20
17	Cu2S nanoparticles modified 3D flowerlike Bi2WO6: Enhanced photoelectric performance and photocatalytic degradation. Materials Letters, 2015, 160, 351-354.	1.3	19
18	Enhanced Photocatalytic Activity toward Organic Pollutants Degradation and Mechanism Insight of Novel CQDs/Bi2O2CO3 Composite. Nanomaterials, 2018, 8, 330.	1.9	19

#	Article	IF	CITATIONS
19	Enhanced photocatalytic activity of Ag/CQDs/Bi2O2CO3 composite photocatalyst under full-spectrum light. Materials Letters, 2019, 234, 264-268.	1.3	18
20	Salinity, temperature and pressure effect on hydrogen wettability of carbonate rocks. International Journal of Hydrogen Energy, 2023, 48, 11303-11311.	3.8	17
21	Synthesis and photocatalytic performance of an efficient Ag@AgBr/K2Ti4O9 composite photocatalyst under visible light. Materials Research Bulletin, 2014, 56, 25-33.	2.7	12
22	Oil-in-Water Self-Assembled Synthesis of Ag@AgCl Nano-Particles on Flower-like Bi2O2CO3 with Enhanced Visible-Light-Driven Photocatalytic Activity. Materials, 2016, 9, 486.	1.3	11
23	The engineering of surface plasmon resonance and up-conversion to improve the photocatalytic performance of MIL-53(Fe) over the full solar spectrum. Journal of Materials Science, 2020, 55, 997-1011.	1.7	11
24	Growth of nano Ag@AgCl on (111) facets of Cu $<$ sub $>$ 2 $<$ /sub $>$ 0 microcrystals with an enhanced photocatalytic activity. RSC Advances, 2015, 5, 62306-62313.	1.7	8
25	Enhanced Visible Light Photocatalytic Degradation of Organic Pollutants over Flower-Like Bi2O2CO3 Dotted with Ag@AgBr. Materials, 2016, 9, 882.	1.3	7
26	An oil-in-water self-assembly synthesis, characterization and photocatalytic properties of nano Ag@AgCl surface-sensitized K 2 Ti 4 O 9. Materials Research Bulletin, 2014, 60, 382-390.	2.7	6
27	Facile hydrothermal synthesis of plasmonic photocatalyst Ag@AgCl and degradative photocatalysis under visible light irradiation. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 84-91.	0.4	6
28	Study of the Adsorption Behavior of Surfactants on Carbonate Surface by Experiment and Molecular Dynamics Simulation. Frontiers in Chemistry, 2022, 10, 847986.	1.8	6
29	Photocatalytic activity of Ag@Agl sensitized K2Ti4O9 nanoparticles under visible light irradiation. Journal of Molecular Structure, 2015, 1081, 260-267.	1.8	5
30	An oil-in-water self-assembly synthesis, characterization and photocatalytic properties of nano Ag@AgBr sensitized K2Ti4O9. Materials Science in Semiconductor Processing, 2015, 39, 339-347.	1.9	2