
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5423628/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Numerical investigations on <scp>COVID</scp> â€19 model through singular and nonâ€singular fractional operators. Numerical Methods for Partial Differential Equations, 2024, 40, .                                            | 2.0 | 73        |
| 2  | Adaptation of reproducing kernel method in solving Atangana–Baleanu fractional Bratu model.<br>International Journal of Dynamics and Control, 2023, 11, 136-148.                                                              | 1.5 | 10        |
| 3  | The B-spline collocation method for solving conformable initial value problems of non-singular and singular types. AEJ - Alexandria Engineering Journal, 2022, 61, 963-974.                                                   | 3.4 | 9         |
| 4  | Effective numerical technique for nonlinear Caputo-Fabrizio systems of fractional Volterra<br>integro-differential equations in Hilbert space. AEJ - Alexandria Engineering Journal, 2022, 61, 1778-1786.                     | 3.4 | 9         |
| 5  | The cubic B-spline interpolation method for numerical point solutions of conformable boundary value problems. AEJ - Alexandria Engineering Journal, 2022, 61, 1519-1528.                                                      | 3.4 | 15        |
| 6  | Lie symmetry analysis, explicit solutions, and conservation laws of the time-fractional Fisher equation in two-dimensional space. Journal of Ocean Engineering and Science, 2022, 7, 345-352.                                 | 1.7 | 9         |
| 7  | Fractional-order biological system: chaos, multistability and coexisting attractors. European Physical<br>Journal: Special Topics, 2022, 231, 1061-1070.                                                                      | 1.2 | 11        |
| 8  | A THEORETICAL STUDY ON FRACTIONAL EBOLA HEMORRHAGIC FEVER MODEL. Fractals, 2022, 30, .                                                                                                                                        | 1.8 | 1         |
| 9  | EXACT SOLITON SOLUTIONS FOR CONFORMABLE FRACTIONAL SIX WAVE INTERACTION EQUATIONS BY THE ANSATZ METHOD. Fractals, 2022, 30, .                                                                                                 | 1.8 | 2         |
| 10 | A New Measure of Quantum Starlike Functions Connected with Julia Functions. Journal of Function Spaces, 2022, 2022, 1-9.                                                                                                      | 0.4 | 3         |
| 11 | Finite difference analysis for entropy optimized flow of Casson fluid with thermo diffusion and diffusion-thermo effects. International Journal of Hydrogen Energy, 2022, 47, 8048-8059.                                      | 3.8 | 23        |
| 12 | Constructing non-fixed-point maps with memristors. European Physical Journal Plus, 2022, 137, .                                                                                                                               | 1.2 | 16        |
| 13 | On Variable-Order Fractional Discrete Neural Networks: Solvability and Stability. Fractal and Fractional, 2022, 6, 119.                                                                                                       | 1.6 | 24        |
| 14 | A study on fractional HBV model through singular and non-singular derivatives. European Physical<br>Journal: Special Topics, 2022, 231, 1885-1904.                                                                            | 1.2 | 8         |
| 15 | Multi-step reproducing kernel algorithm for solving Caputo–Fabrizio fractional stiff models arising in electric circuits. Soft Computing, 2022, 26, 3713-3727.                                                                | 2.1 | 16        |
| 16 | Stability and bifurcation analysis of a fractionalâ€order model of cellâ€toâ€cell spread of HIVâ€1 with a<br>discrete time delay. Mathematical Methods in the Applied Sciences, 2022, 45, 7081-7095.                          | 1.2 | 16        |
| 17 | On the Stability of Incommensurate h-Nabla Fractional-Order Difference Systems. Fractal and Fractional, 2022, 6, 158.                                                                                                         | 1.6 | 11        |
| 18 | On group of Lie symmetry analysis, explicit series solutions and conservation laws for the<br>time-fractional (2 + 1)-dimensional Zakharov-Kuznetsov (q,p,r) equation. Journal of Geometry and<br>Physics, 2022, 176, 104512. | 0.7 | 6         |

| #  | Article                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | New results for the stability of fractional-order discrete-time neural networks. AEJ - Alexandria<br>Engineering Journal, 2022, 61, 10359-10369.                                  | 3.4 | 22        |
| 20 | A study of a modified nonlinear dynamical system with fractal-fractional derivative. International<br>Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 2620-2639.  | 1.6 | 3         |
| 21 | A FRACTAL-FRACTIONAL 2019-NCOV MODEL OF MAJOR DISASTER FOR HUMAN LIFE. Fractals, 2022, 30, .                                                                                      | 1.8 | 3         |
| 22 | Fractional-order coronavirus models with vaccination strategies impacted on Saudi Arabia's infections. AIMS Mathematics, 2022, 7, 12842-12858.                                    | 0.7 | 11        |
| 23 | New optical soliton solutions for coupled resonant Davey-Stewartson system with conformable operator. Optical and Quantum Electronics, 2022, 54, .                                | 1.5 | 5         |
| 24 | Multivalent Functions and Differential Operator Extended by the Quantum Calculus. Fractal and Fractional, 2022, 6, 354.                                                           | 1.6 | 8         |
| 25 | Certain integral representations involving hypergeometric functions in two variables. Mathematica<br>Moravica, 2022, 26, 27-36.                                                   | 0.6 | 1         |
| 26 | A Novel Fractional-Order Discrete SIR Model for Predicting COVID-19 Behavior. Mathematics, 2022, 10, 2224.                                                                        | 1.1 | 16        |
| 27 | Numerical solution of fractional differential equations with temporal two-point BVPs using reproducing kernal Hilbert space method. AIMS Mathematics, 2021, 6, 3465-3485.         | 0.7 | 3         |
| 28 | Generating Multidirectional Variable Hidden Attractors via Newly Commensurate and<br>Incommensurate Non-Equilibrium Fractional-Order Chaotic Systems. Entropy, 2021, 23, 261.     | 1.1 | 11        |
| 29 | Numerical approach in the Hilbert space to solve a fuzzy Atangana-Baleanu fractional hybrid system.<br>Chaos, Solitons and Fractals, 2021, 143, 110506.                           | 2.5 | 59        |
| 30 | Entropy Optimization in Nonlinear Mixed Convective Flow of Nanomaterials Through Porous Space.<br>Journal of Non-Equilibrium Thermodynamics, 2021, 46, 191-203.                   | 2.4 | 15        |
| 31 | An attractive numerical algorithm for solving nonlinear Caputo–Fabrizio fractional Abel differential equation in a Hilbert space. Advances in Difference Equations, 2021, 2021, . | 3.5 | 36        |
| 32 | Numerical simulation of MHD hybrid nanofluid flow by a stretchable surface. Chinese Journal of Physics, 2021, 71, 597-609.                                                        | 2.0 | 16        |
| 33 | A Fractional Approach to a Computational Eco-Epidemiological Model with Holling Type-II Functional Response. Symmetry, 2021, 13, 1159.                                            | 1.1 | 6         |
| 34 | Quarter-Sweep Preconditioned Relaxation Method, Algorithm and Efficiency Analysis for Fractional<br>Mathematical Equation. Fractal and Fractional, 2021, 5, 98.                   | 1.6 | 7         |
| 35 | An Extension of Beta Function by Using Wiman's Function. Axioms, 2021, 10, 187.                                                                                                   | 0.9 | 8         |
| 36 | A chaos study of fractional SIR epidemic model of childhood diseases. Results in Physics, 2021, 27, 104422.                                                                       | 2.0 | 8         |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Certain Coefficient Estimate Problems for Three-Leaf-Type Starlike Functions. Fractal and Fractional, 2021, 5, 137.                                                                                                   | 1.6 | 19        |
| 38 | Computational algorithm for solving drug pharmacokinetic model under uncertainty with<br>nonsingular kernel type Caputo-Fabrizio fractional derivative. AEJ - Alexandria Engineering Journal,<br>2021, 60, 4347-4362. | 3.4 | 29        |
| 39 | Numerical investigation for Caputo-Fabrizio fractional Riccati and Bernoulli equations using iterative reproducing kernel method. Applied Numerical Mathematics, 2021, 170, 418-434.                                  | 1.2 | 47        |
| 40 | On numerical approximation of Atangana-Baleanu-Caputo fractional integro-differential equations under uncertainty in Hilbert Space. Mathematical Modelling of Natural Phenomena, 2021, 16, 41.                        | 0.9 | 31        |
| 41 | Soret–Dufour aspects with activation energy in peristaltic mechanism of third-grade material with variable features. Journal of Thermal Analysis and Calorimetry, 2021, 143, 2749-2760.                               | 2.0 | 6         |
| 42 | Solving a Fractional-Order Differential Equation Using Rational Symmetric Contraction Mappings.<br>Fractal and Fractional, 2021, 5, 159.                                                                              | 1.6 | 24        |
| 43 | Numerical solvability of generalized Bagley–Torvik fractional models under Caputo–Fabrizio<br>derivative. Advances in Difference Equations, 2021, 2021, .                                                             | 3.5 | 7         |
| 44 | A study of fractional TB model due to mycobacterium tuberculosis bacteria. Chaos, Solitons and Fractals, 2021, 153, 111452.                                                                                           | 2.5 | 10        |
| 45 | A new formulation of finite difference and finite volume methods for solving a space fractional convection–diffusion model with fewer error estimates. Advances in Difference Equations, 2021, 2021, .                | 3.5 | 6         |
| 46 | An Avant-Garde Handling of Temporal-Spatial Fractional Physical Models. International Journal of<br>Nonlinear Sciences and Numerical Simulation, 2020, 21, 183-194.                                                   | 0.4 | 13        |
| 47 | Analytic solutions of the generalized water wave dynamical equations based on time-space symmetric differential operator. Journal of Ocean Engineering and Science, 2020, 5, 186-195.                                 | 1.7 | 17        |
| 48 | Cattaneo-Christov (CC) heat flux model for nanomaterial stagnation point flow of Oldroyd-B fluid.<br>Computer Methods and Programs in Biomedicine, 2020, 187, 105247.                                                 | 2.6 | 48        |
| 49 | Modified analytical approach for generalized quadratic and cubic logistic models with<br>Caputo-Fabrizio fractional derivative. AEJ - Alexandria Engineering Journal, 2020, 59, 5111-5122.                            | 3.4 | 20        |
| 50 | Development of spreading symmetric two-waves motion for a family of two-mode nonlinear equations. Heliyon, 2020, 6, e04057.                                                                                           | 1.4 | 14        |
| 51 | Numerical schemes for studying biomathematics model inherited with memory-time and delay-time. AEJ<br>- Alexandria Engineering Journal, 2020, 59, 2969-2974.                                                          | 3.4 | 10        |
| 52 | Susceptible-Infected-Susceptible Epidemic Discrete Dynamic System Based on Tsallis Entropy. Entropy, 2020, 22, 769.                                                                                                   | 1.1 | 7         |
| 53 | On Dynamics of a Fractional-Order Discrete System with Only One Nonlinear Term and without Fixed Points. Electronics (Switzerland), 2020, 9, 2179.                                                                    | 1.8 | 9         |
| 54 | Dynamics analysis of fractional-order Hopfield neural networks. International Journal of<br>Biomathematics, 2020, 13, 2050083.                                                                                        | 1.5 | 42        |

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Cattaneo-Christov heat flux (CC model) in mixed convective stagnation point flow towards a Riga plate. Computer Methods and Programs in Biomedicine, 2020, 196, 105564.                                           | 2.6 | 46        |
| 56 | A Quadratic Fractional Map without Equilibria: Bifurcation, 0–1 Test, Complexity, Entropy, and<br>Control. Electronics (Switzerland), 2020, 9, 748.                                                               | 1.8 | 26        |
| 57 | Numerical computations of coupled fractional resonant Schrödinger equations arising in quantum mechanics under conformable fractional derivative sense. Physica Scripta, 2020, 95, 075218.                        | 1.2 | 94        |
| 58 | A New Attractive Analytic Approach for Solutions of Linear and Nonlinear Neutral Fractional Pantograph Equations. Chaos, Solitons and Fractals, 2020, 138, 109957.                                                | 2.5 | 62        |
| 59 | Smooth expansion to solve high-order linear conformable fractional PDEs via residual power series method: Applications to physical and engineering equations. Ain Shams Engineering Journal, 2020, 11, 1243-1254. | 3.5 | 30        |
| 60 | Generalized Briot–Bouquet differential equation by a quantum difference operator in a complex<br>domain. International Journal of Dynamics and Control, 2020, 8, 762-771.                                         | 1.5 | 8         |
| 61 | Solving space-fractional Cauchy problem by modified finite-difference discretization scheme. AEJ -<br>Alexandria Engineering Journal, 2020, 59, 2409-2417.                                                        | 3.4 | 10        |
| 62 | A Numerical Algorithm for the Solutions of ABC Singular Lane–Emden Type Models Arising in<br>Astrophysics Using Reproducing Kernel Discretization Method. Mathematics, 2020, 8, 923.                              | 1.1 | 74        |
| 63 | Analytic solutions for a modified fractional three wave interaction equations with conformable derivative by unified method. AEJ - Alexandria Engineering Journal, 2020, 59, 3731-3739.                           | 3.4 | 11        |
| 64 | THE REPRODUCING KERNEL ALGORITHM FOR NUMERICAL SOLUTION OF VAN DER POL DAMPING MODEL IN<br>VIEW OF THE ATANGANA–BALEANU FRACTIONAL APPROACH. Fractals, 2020, 28, 2040010.                                         | 1.8 | 88        |
| 65 | Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system. Chaos, Solitons and Fractals, 2020, 133, 109624.                                          | 2.5 | 76        |
| 66 | Chaos and control of a three-dimensional fractional order discrete-time system with no equilibrium and its synchronization. AIP Advances, 2020, 10, .                                                             | 0.6 | 45        |
| 67 | Residual Power Series Approach for Solving Linear Fractional Swift-Hohenberg Problems. Lecture<br>Notes in Networks and Systems, 2020, , 33-43.                                                                   | 0.5 | 2         |
| 68 | Solving Time-Space-Fractional Cauchy Problem with Constant Coefficients by Finite-Difference<br>Method. Forum for Interdisciplinary Mathematics, 2020, , 25-46.                                                   | 0.8 | 10        |
| 69 | Exact optical solutions for the regularized long-wave Kadomtsev-Petviashvili equation. Physica<br>Scripta, 2020, 95, 105208.                                                                                      | 1.2 | 8         |
| 70 | Structure of optical soliton solution for nonliear resonant space-time SchrĶdinger equation in conformable sense with full nonlinearity term. Physica Scripta, 2020, 95, 105215.                                  | 1.2 | 63        |
| 71 | PIECEWISE OPTIMAL FRACTIONAL REPRODUCING KERNEL SOLUTION AND CONVERGENCE ANALYSIS FOR THE ATANGANA–BALEANU–CAPUTO MODEL OF THE LIENARD'S EQUATION. Fractals, 2020, 28, 2040007.                                   | 1.8 | 90        |
| 72 | Solvability and stability of a fractional dynamical system of the growth of COVID-19 with approximate solution by fractional Chebyshev polynomials. Advances in Difference Equations, 2020, 2020, 338.            | 3.5 | 7         |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Higher-dimensional physical models with multimemory indices: analytic solution and convergence analysis. Advances in Difference Equations, 2020, 2020, 364.                                                  | 3.5 | 2         |
| 74 | A Class of Linear Non-Homogenous Higher Order Matrix Fractional Differential Equations: Analytical Solutions and New Technique. Fractional Calculus and Applied Analysis, 2020, 23, 356-377.                 | 1.2 | 28        |
| 75 | Adaptation of Conformable Residual Power Series Scheme in Solving Nonlinear Fractional Quantum<br>Mechanics Problems. Applied Sciences (Switzerland), 2020, 10, 890.                                         | 1.3 | 17        |
| 76 | Solutions of Fractional Verhulst Model by Modified Analytical and Numerical Approaches. Forum for Interdisciplinary Mathematics, 2020, , 233-260.                                                            | 0.8 | 0         |
| 77 | Analytical numerical solutions of the fractional multi-pantograph system: Two attractive methods and comparisons. Results in Physics, 2019, 14, 102500.                                                      | 2.0 | 34        |
| 78 | On (2 + 1)-dimensional physical models endowed with decoupled spatial and temporal memory indices⋆.<br>European Physical Journal Plus, 2019, 134, 1.                                                         | 1.2 | 12        |
| 79 | Identification of hysteresis models using real-coded genetic algorithms. European Physical Journal Plus, 2019, 134, 1.                                                                                       | 1.2 | 11        |
| 80 | Comparing Bibliometric Analysis Using PubMed, Scopus, and Web of Science Databases. Journal of<br>Visualized Experiments, 2019, , .                                                                          | 0.2 | 147       |
| 81 | Solving Fuzzy Fractional IVPs of order $2\hat{I}^2$ by Residual Power Series Algorithm. , 2019, , .                                                                                                          |     | 2         |
| 82 | Two computational approaches for solving a fractional obstacle system in Hilbert space. Advances in<br>Difference Equations, 2019, 2019, .                                                                   | 3.5 | 44        |
| 83 | Construction of fractional power series solutions to fractional stiff system using residual functions algorithm. Advances in Difference Equations, 2019, 2019, .                                             | 3.5 | 48        |
| 84 | Ternary-fractional differential transform schema: theory and application. Advances in Difference<br>Equations, 2019, 2019, .                                                                                 | 3.5 | 22        |
| 85 | Series solutions of nonlinear conformable fractional KdV-Burgers equation with some applications.<br>European Physical Journal Plus, 2019, 134, 1.                                                           | 1.2 | 45        |
| 86 | Solitary solutions for time-fractional nonlinear dispersive PDEs in the sense of conformable fractional derivative. Chaos, 2019, 29, 093102.                                                                 | 1.0 | 74        |
| 87 | Application of Power Series Method for Solving Obstacle Problem of Fractional Order. , 2019, , .                                                                                                             |     | 0         |
| 88 | An approximate solution method for the fractional version of a singular BVP occurring in the<br>electrohydrodynamic flow in a circular cylindrical conduit. European Physical Journal Plus, 2019, 134,<br>1. | 1.2 | 7         |
| 89 | Numerical solutions of nonlinear fractional model arising in the appearance of the strip patterns in two-dimensional systems. Advances in Difference Equations, 2019, 2019, .                                | 3.5 | 65        |
| 90 | Tuning PID and PIλDδ controllers using particle swarm optimization algorithm via El-Khazali's approach.<br>AIP Conference Proceedings, 2019, , .                                                             | 0.3 | 6         |

| #   | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | New styles of periodic solutions of the classical six-body problem. Mathematics and Computers in Simulation, 2019, 159, 183-196.                                                                                      | 2.4 | 2         |
| 92  | Generalizing the meaning of derivatives and integrals of any order differential equations by<br>fuzzy-order derivatives and fuzzy-order integrals. Journal of King Saud University - Science, 2019, 31,<br>240-245.   | 1.6 | 0         |
| 93  | Soft Numerical Algorithm with Convergence Analysis for Time-Fractional Partial IDEs Constrained by Neumann Conditions. Springer Proceedings in Mathematics and Statistics, 2019, , 107-119.                           | 0.1 | 1         |
| 94  | New Fractional Analytical Study of Three-Dimensional Evolution Equation Equipped With Three Memory Indices. Journal of Computational and Nonlinear Dynamics, 2019, 14, .                                              | 0.7 | 11        |
| 95  | Solution of Fractional SIR Epidemic Model Using Residual Power Series Method. Applied Mathematics and Information Sciences, 2019, 13, 153-161.                                                                        | 0.7 | 28        |
| 96  | Computing bifurcations behavior of mixed type singular time-fractional partial integrodifferential equations of Dirichlet functions types in hilbert space with error analysis. Filomat, 2019, 33, 3845-3853.         | 0.2 | 6         |
| 97  | Multistep Approach for Nonlinear Fractional Bloch System Using Adomian Decomposition Techniques.<br>Springer Proceedings in Mathematics and Statistics, 2019, , 153-171.                                              | 0.1 | 0         |
| 98  | New solitary wave and multiple soliton solutions for fifth order nonlinear evolution equation with time variable coefficients. Results in Physics, 2018, 8, 977-980.                                                  | 2.0 | 6         |
| 99  | New implementation of reproducing kernel Hilbert space method for solving a fuzzy<br>integro-differential equation of integer and fractional orders. Journal of King Saud University -<br>Science, 2018, 30, 352-358. | 1.6 | 4         |
| 100 | Fractional calculus's adventures in Wonderland (Round table held at ICFDA 2018). Fractional<br>Calculus and Applied Analysis, 2018, 21, 1151-1155.                                                                    | 1.2 | 1         |
| 101 | Analytic Solution of Spatial-Temporal Fractional Klein-Gordon Equation Arising in Physical Models.<br>SSRN Electronic Journal, 2018, , .                                                                              | 0.4 | 2         |
| 102 | Numerical Solutions of Linear Time-fractional Klein-Gordon Equation by Using Power Series<br>Approach. SSRN Electronic Journal, 2018, , .                                                                             | 0.4 | 1         |
| 103 | An approach for approximate solution of fractional-order smoking model with relapse class.<br>International Journal of Biomathematics, 2018, 11, 1850077.                                                             | 1.5 | 10        |
| 104 | Dark and singular optical solutions with dual-mode nonlinear Schrödinger's equation and Kerr-law<br>nonlinearity. Optik, 2018, 172, 822-825.                                                                          | 1.4 | 55        |
| 105 | The General Solution of Singular Fractional-Order Linear Time-Invariant Continuous Systems with Regular Pencils. Entropy, 2018, 20, 400.                                                                              | 1.1 | 18        |
| 106 | Are university rankings useful to improve research? A systematic review. PLoS ONE, 2018, 13, e0193762.                                                                                                                | 1.1 | 87        |
| 107 | Modeling and Analyzing Neural Networks Using Reproducing Kernel Hilbert Space Algorithm. Applied Mathematics and Information Sciences, 2018, 12, 89-99.                                                               | 0.7 | 8         |
| 108 | Comparing Two Numerical Methods for Approximating a New Giving Up Smoking Model Involving<br>Fractional Order Derivatives. Iranian Journal of Science and Technology, Transaction A: Science, 2017,<br>41, 569-575.   | 0.7 | 8         |

| #   | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Numerical Multistep Approach for Solving Fractional Partial Differential Equations. International<br>Journal of Computational Methods, 2017, 14, 1750029.                                                                             | 0.8 | 94        |
| 110 | Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Computing, 2017, 21, 7191-7206.                                                                                   | 2.1 | 263       |
| 111 | NUMERICAL SOLUTION OF SECOND-ORDER FUZZY DIFFERENTIAL EQUATION OF INTEGER AND FRACTIONAL<br>ORDER USING REPRODUCING KERNEL HILBERT SPACE METHOD TOOLS. Far East Journal of Mathematical<br>Sciences, 2017, 101, 1327-1351.            | 0.0 | 1         |
| 112 | A Novel Iterative Numerical Algorithm for the Solutions of Systems of Fuzzy Initial Value Problems.<br>Applied Mathematics and Information Sciences, 2017, 11, 1059-1074.                                                             | 0.7 | 5         |
| 113 | Second Order Fuzzy Fractional Differential Equations Under Caputo's H-Differentiability. Applied Mathematics and Information Sciences, 2017, 11, 1597-1608.                                                                           | 0.7 | 9         |
| 114 | Approximate solutions of fuzzy differential equations of fractional order using modified<br>reproducing kernel Hilbert space method. Journal of Nonlinear Science and Applications, 2017, 10,<br>2423-2439.                           | 0.4 | 2         |
| 115 | Numerical investigations for systems of second-order periodic boundary value problems using reproducing kernel method. Applied Mathematics and Computation, 2016, 291, 137-148.                                                       | 1.4 | 71        |
| 116 | Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method.<br>Soft Computing, 2016, 20, 3283-3302.                                                                                            | 2.1 | 292       |
| 117 | Analytical Approximations of Partial Differential Equations of Fractional Order with Multistep Approach. Journal of Computational and Theoretical Nanoscience, 2016, 13, 7793-7801.                                                   | 0.4 | 32        |
| 118 | Computational Method for Solving Nonlinear Voltera Integro-Differential Equations. Journal of Computational and Theoretical Nanoscience, 2016, 13, 7802-7806.                                                                         | 0.4 | 1         |
| 119 | Analytical Simulation of Singular Second-Order, Three Points Boundary Value Problems for Fredholm<br>Operator Using Computational Kernel Algorithm. Journal of Computational and Theoretical<br>Nanoscience, 2016, 13, 7816-7824.     | 0.4 | 4         |
| 120 | A New Approximation Method for Solving Fuzzy Heat Equations. Journal of Computational and Theoretical Nanoscience, 2016, 13, 7825-7832.                                                                                               | 0.4 | 5         |
| 121 | New Solitary Wave and Multiple Soliton Solutions for the Time-Space Coupled Fractional mKdV<br>System with Time-Dependent Coefficients. Journal of Computational and Theoretical Nanoscience,<br>2016, 13, 9082-9089.                 | 0.4 | 6         |
| 122 | Solution of Inverse Kinematics Problem using Genetic Algorithms. Applied Mathematics and Information Sciences, 2016, 10, 225-233.                                                                                                     | 0.7 | 80        |
| 123 | An Efficient Analytical Method for Solving Singular Initial Value Problems of Nonlinear Systems.<br>Applied Mathematics and Information Sciences, 2016, 10, 647-656.                                                                  | 0.7 | 43        |
| 124 | A Residual Power Series Technique for Solving Systems of Initial Value Problems. Applied Mathematics and Information Sciences, 2016, 10, 765-775.                                                                                     | 0.7 | 12        |
| 125 | An Efficient Computational Method for Handling Singular Second-Order, Three Points Volterra<br>Integrodifferential Equations. Journal of Computational and Theoretical Nanoscience, 2016, 13,<br>7807-7815.                           | 0.4 | 3         |
| 126 | A Novel Numerical Algorithm to Solve Systems of Fuzzy Differential Equations of Fractional and<br>Integer Order Using Reproducing Hilbert Space Method. Journal of Computational and Theoretical<br>Nanoscience, 2016, 13, 8789-8799. | 0.4 | 0         |

8

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Existence, Uniqueness, and Characterization Theorems for Nonlinear Fuzzy Integrodifferential<br>Equations of Volterra Type. Mathematical Problems in Engineering, 2015, 2015, 1-13.                | 0.6 | 16        |
| 128 | A novel expansion iterative method for solving linear partial differential equations of fractional order. Applied Mathematics and Computation, 2015, 257, 119-133.                                 | 1.4 | 107       |
| 129 | Approximate analytical solution of the nonlinear fractional KdV–Burgers equation: A new iterative algorithm. Journal of Computational Physics, 2015, 293, 81-95.                                   | 1.9 | 212       |
| 130 | Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations. Journal of Computational Physics, 2015, 293, 385-399.              | 1.9 | 126       |
| 131 | Iterative Multistep Reproducing Kernel Hilbert Space Method for Solving Strongly Nonlinear<br>Oscillators. Advances in Mathematical Physics, 2014, 2014, 1-7.                                      | 0.4 | 11        |
| 132 | A Reproducing Kernel Hilbert Space Method for Solving Systems of Fractional Integrodifferential<br>Equations. Abstract and Applied Analysis, 2014, 2014, 1-6.                                      | 0.3 | 11        |
| 133 | Optimization Solution of Troesch's and Bratu's Problems of Ordinary Type Using Novel Continuous<br>Genetic Algorithm. Discrete Dynamics in Nature and Society, 2014, 2014, 1-15.                   | 0.5 | 126       |
| 134 | Analytical Study of Fractional-Order Multiple Chaotic FitzHugh-Nagumo Neurons Model Using<br>Multistep Generalized Differential Transform Method. Abstract and Applied Analysis, 2014, 2014, 1-10. | 0.3 | 51        |
| 135 | Multiple Solutions of Nonlinear Boundary Value Problems of Fractional Order: A New Analytic<br>Iterative Technique. Entropy, 2014, 16, 471-493.                                                    | 1.1 | 71        |
| 136 | Comparison of Numerical Methods of the SEIR Epidemic Model of Fractional Order. Zeitschrift Fur<br>Naturforschung - Section A Journal of Physical Sciences, 2014, 69, 81-89.                       | 0.7 | 7         |
| 137 | Inhibition or enhancement of chaotic convection via inclined magnetic field. Applied Mathematical<br>Modelling, 2014, 38, 2996-3002.                                                               | 2.2 | 5         |
| 138 | Solving the fractional nonlinear Bloch system using the multi-step generalized differential transform method. Computers and Mathematics With Applications, 2014, 68, 2124-2132.                    | 1.4 | 10        |
| 139 | Dynamical analysis of the Irving–Mullineux oscillator equation of fractional order. Signal<br>Processing, 2014, 102, 171-176.                                                                      | 2.1 | 16        |
| 140 | ON ONSET OF CHAOTIC CONVECTION IN COUPLE-STRESS FLUIDS. Mathematical Modelling and Analysis, 2014, 19, 359-370.                                                                                    | 0.7 | 5         |
| 141 | A computational method for solving periodic boundary value problems for integro-differential<br>equations of Fredholm–Volterra type. Applied Mathematics and Computation, 2014, 240, 229-239.      | 1.4 | 41        |
| 142 | Control and switching synchronization of fractional order chaotic systems using active control technique. Journal of Advanced Research, 2014, 5, 125-132.                                          | 4.4 | 103       |
| 143 | The multistage homotopy analysis method: application to a biochemical reaction model of fractional order. International Journal of Computer Mathematics, 2014, 91, 1030-1040.                      | 1.0 | 1         |
| 144 | Application of Continuous Genetic Algorithm for Nonlinear System of Second-Order Boundary Value<br>Problems. Applied Mathematics and Information Sciences, 2014, 8, 235-248.                       | 0.7 | 26        |

SHAHER M MOMANI

| #   | Article                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | An Optimization Algorithm for Solving Systems of Singular Boundary Value Problems. Applied<br>Mathematics and Information Sciences, 2014, 8, 2809-2821.                                          | 0.7 | 88        |
| 146 | A Reproducing Kernel Hilbert Space Method for Solving Integro-Differential Equations of Fractional Order. Journal of Optimization Theory and Applications, 2013, 156, 96-105.                    | 0.8 | 23        |
| 147 | Square-root dynamics of a giving up smoking model. Applied Mathematical Modelling, 2013, 37, 5326-5334.                                                                                          | 2.2 | 59        |
| 148 | Solving fractional two-point boundary value problems using continuous analytic method. Ain Shams<br>Engineering Journal, 2013, 4, 539-547.                                                       | 3.5 | 26        |
| 149 | A Computational Method for Two-Point Boundary Value Problems of Fourth-Order Mixed<br>Integrodifferential Equations. Mathematical Problems in Engineering, 2013, 2013, 1-10.                     | 0.6 | 63        |
| 150 | New Results on Fractional Power Series: Theories and Applications. Entropy, 2013, 15, 5305-5323.                                                                                                 | 1.1 | 161       |
| 151 | Analytical Solutions of Fuzzy Initial Value Problems by HAM. Applied Mathematics and Information Sciences, 2013, 7, 1903-1919.                                                                   | 0.7 | 36        |
| 152 | Fractional Differential Equations 2012. International Journal of Differential Equations, 2013, 2013, 1-2.                                                                                        | 0.3 | 12        |
| 153 | A Reliable Analytical Method for Solving Higher-Order Initial Value Problems. Discrete Dynamics in Nature and Society, 2013, 2013, 1-12.                                                         | 0.5 | 58        |
| 154 | Parametric Control on Fractional-Order Response for Lü Chaotic System. Journal of Physics:<br>Conference Series, 2013, 423, 012024.                                                              | 0.3 | 0         |
| 155 | A Genetic Algorithm Approach for Prediction of Linear Dynamical Systems. Mathematical Problems in Engineering, 2013, 2013, 1-12.                                                                 | 0.6 | 1,476     |
| 156 | Solving Singular Two-Point Boundary Value Problems Using Continuous Genetic Algorithm. Abstract and Applied Analysis, 2012, 2012, 1-25.                                                          | 0.3 | 75        |
| 157 | Application of Reproducing Kernel Method for Solving Nonlinear Fredholm-Volterra<br>Integrodifferential Equations. Abstract and Applied Analysis, 2012, 2012, 1-16.                              | 0.3 | 49        |
| 158 | Nonlinear Problems: Analytical and Computational Approach with Applications. Abstract and Applied Analysis, 2012, 2012, 1-2.                                                                     | 0.3 | 0         |
| 159 | Adaptation of Differential Transform Method for the Numeric-Analytic Solution of Fractional-Order<br>RA¶ssler Chaotic and Hyperchaotic Systems. Abstract and Applied Analysis, 2012, 2012, 1-13. | 0.3 | 11        |
| 160 | Application of Multistage Homotopy Perturbation Method to the Chaotic Genesio System. Abstract and Applied Analysis, 2012, 2012, 1-10.                                                           | 0.3 | 9         |
| 161 | Homotopy Analysis Method for Second-Order Boundary Value Problems of Integrodifferential<br>Equations. Discrete Dynamics in Nature and Society, 2012, 2012, 1-18.                                | 0.5 | 29        |
| 162 | Solving Linear and Nonlinear Fractional Differential Equations Using Spline Functions. Abstract and<br>Applied Analysis, 2012, 2012, 1-9.                                                        | 0.3 | 8         |

| #   | Article                                                                                                                                                                                                                                                                                                                 | IF                                                   | CITATIONS                         |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------|
| 163 | Dynamical System Analysis of Thermal Convection in a Horizontal Layer of Nanofluids Heated from<br>Below. Mathematical Problems in Engineering, 2012, 2012, 1-13.                                                                                                                                                       | 0.6                                                  | 15                                |
| 164 | Application of Multistep Generalized Differential Transform Method for the Solutions of the Fractional-Order Chua's System. Discrete Dynamics in Nature and Society, 2012, 2012, 1-12.                                                                                                                                  | 0.5                                                  | 4                                 |
| 165 | A numeric–analytic method for approximating a giving up smoking model containing fractional derivatives. Computers and Mathematics With Applications, 2012, 64, 3065-3074.                                                                                                                                              | 1.4                                                  | 70                                |
| 166 | The fractional-order modeling and synchronization of electrically coupled neuron systems.<br>Computers and Mathematics With Applications, 2012, 64, 3329-3339.                                                                                                                                                          | 1.4                                                  | 117                               |
| 167 | A NONSTANDARD FINITE DIFFERENCE SCHEME FOR TWO-SIDED SPACE-FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250079.                                                                                                            | 0.7                                                  | 19                                |
| 168 | Reply to "Comments on "Fuzzy fractional order sliding mode controller for nonlinear systems,<br>Commun Nonlinear Sci Numer Simulat 15 (2010) 963–978―― Communications in Nonlinear Science and<br>Numerical Simulation, 2012, 17, 4010-4014.                                                                            | 1.7                                                  | 10                                |
| 169 | The Multi-Step Differential Transform Method and Its Application to Determine the Solutions of Non-Linear Oscillators. Advances in Applied Mathematics and Mechanics, 2012, 4, 422-438.                                                                                                                                 | 0.7                                                  | 21                                |
| 170 | Application of the modified differential transform method to fractional oscillators. Kybernetes, 2011, 40, 751-761.                                                                                                                                                                                                     | 1.2                                                  | 4                                 |
| 171 | Dynamical analysis of fractional-order modified logistic model. Computers and Mathematics With Applications, 2011, 62, 1098-1104.                                                                                                                                                                                       | 1.4                                                  | 52                                |
| 172 | Application of Legendre wavelets for solving fractional differential equations. Computers and Mathematics With Applications, 2011, 62, 1038-1045.                                                                                                                                                                       | 1.4                                                  | 149                               |
| 173 | The non-standard finite difference scheme for linear fractional PDEs in fluid mechanics. Computers and Mathematics With Applications, 2011, 61, 1209-1216.                                                                                                                                                              | 1.4                                                  | 75                                |
| 174 | Non-standard finite difference schemes for solving fractional-order Rössler chaotic and hyperchaotic systems. Computers and Mathematics With Applications, 2011, 62, 1068-1074.                                                                                                                                         | 1.4                                                  | 26                                |
| 175 | lymphotropic virus I (HTLV-I) infection of <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si21.gif" display="inline"<br/>overflow="scroll"&gt;<mml:mstyle<br>mathvariant="normal"&gt;<mml:mi>CD</mml:mi><mml:msup><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msup></mml:mstyle<br></mml:math<br> | 1.4<br><td>57<br/>ow&gt;<mml:m< td=""></mml:m<></td> | 57<br>ow> <mml:m< td=""></mml:m<> |
| 176 | Leells. Computers and Mathematics With Applications, 2011, 62, 996-1002.<br>Stability and non-standard finite difference method of the generalized Chua's circuit. Computers and<br>Mathematics With Applications, 2011, 62, 961-970.                                                                                   | 1.4                                                  | 63                                |
| 177 | Differential transform method for solving singularly perturbed Volterra integral equations. Journal of King Saud University - Science, 2011, 23, 223-228.                                                                                                                                                               | 1.6                                                  | 11                                |
| 178 | Fractional Differential Equations 2011. International Journal of Differential Equations, 2011, 2011, 1-2.                                                                                                                                                                                                               | 0.3                                                  | 3                                 |
| 179 | An effective variational iteration algorithm for solving Riccati differential equations. Applied Mathematics Letters, 2010, 23, 922-927.                                                                                                                                                                                | 1.5                                                  | 21                                |
| 180 | Solutions of a fractional oscillator by using differential transform method. Computers and Mathematics With Applications, 2010, 59, 1356-1362.                                                                                                                                                                          | 1.4                                                  | 60                                |

SHAHER M MOMANI

| #   | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Chaotic fractional-order Coullet system: Synchronization and control approach. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 665-674.                                                             | 1.7 | 44        |
| 182 | Fractional order control of a coupled tank. Nonlinear Dynamics, 2010, 61, 383-397.                                                                                                                                          | 2.7 | 55        |
| 183 | The homotopy analysis method for handling systems of fractional differential equations. Applied<br>Mathematical Modelling, 2010, 34, 24-35.                                                                                 | 2.2 | 102       |
| 184 | A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations. Applied Mathematical Modelling, 2010, 34, 593-600.                                                                | 2.2 | 115       |
| 185 | Fuzzy fractional order sliding mode controller for nonlinear systems. Communications in Nonlinear<br>Science and Numerical Simulation, 2010, 15, 963-978.                                                                   | 1.7 | 197       |
| 186 | Analytical approximate solutions of systems of fractional algebraic–differential equations by homotopy analysis method. Computers and Mathematics With Applications, 2010, 59, 1227-1235.                                   | 1.4 | 41        |
| 187 | Sliding mode synchronization of an uncertain fractional order chaotic system. Computers and Mathematics With Applications, 2010, 59, 1637-1643.                                                                             | 1.4 | 151       |
| 188 | Fractional Differential Equations. International Journal of Differential Equations, 2010, 2010, 1-2.                                                                                                                        | 0.3 | 14        |
| 189 | Synchronization of Chaotic Nonlinear Gyros Using Fractional Order Controller. , 2010, , 479-485.                                                                                                                            |     | 5         |
| 190 | Series solutions of a fractional oscillator by means of the homotopy perturbation method.<br>International Journal of Computer Mathematics, 2010, 87, 1072-1082.                                                            | 1.0 | 10        |
| 191 | Analytical approximate solutions of the fractional convection–diffusion equation with nonlinear<br>source term by He's homotopy perturbation method. International Journal of Computer Mathematics,<br>2010, 87, 1057-1065. | 1.0 | 55        |
| 192 | Synchronization of Fractional-Order Chaotic System via Adaptive PID Controller. , 2010, , 445-452.                                                                                                                          |     | 5         |
| 193 | Solving linear fractional-order differential equations via the enhanced homotopy perturbation method. Physica Scripta, 2009, T136, 014035.                                                                                  | 1.2 | 1         |
| 194 | Application of the enhanced homotopy perturbation method to solve the fractional-order<br>Bagley–Torvik differential equation. Physica Scripta, 2009, T136, 014032.                                                         | 1.2 | 13        |
| 195 | The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics. Computers and Mathematics With Applications, 2009, 58, 2199-2208.                          | 1.4 | 217       |
| 196 | The modified homotopy perturbation method for solving strongly nonlinear oscillators. Computers and Mathematics With Applications, 2009, 58, 2209-2220.                                                                     | 1.4 | 54        |
| 197 | Homotopy analysis method for fractional IVPs. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 674-684.                                                                                              | 1.7 | 360       |
| 198 | The multistage homotopy-perturbation method: A powerful scheme for handling the Lorenz system.<br>Chaos, Solitons and Fractals, 2009, 40, 1929-1937.                                                                        | 2.5 | 47        |

| #   | Article                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Numerical methods for nonlinear partial differential equations of fractional order. Applied<br>Mathematical Modelling, 2008, 32, 28-39.                                                          | 2.2 | 208       |
| 200 | Solutions of non-linear oscillators by the modified differential transform method. Computers and Mathematics With Applications, 2008, 55, 833-842.                                               | 1.4 | 97        |
| 201 | Phase synchronization in fractional differential chaotic systems. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 2350-2354.                                     | 0.9 | 49        |
| 202 | Variational iteration method for solving the space- and time-fractional KdV equation. Numerical<br>Methods for Partial Differential Equations, 2008, 24, 262-271.                                | 2.0 | 77        |
| 203 | A numerical scheme for the solution of viscous Cahn–Hilliard equation. Numerical Methods for<br>Partial Differential Equations, 2008, 24, 663-669.                                               | 2.0 | 8         |
| 204 | Numerical solutions of the spaceâ€time fractional advectionâ€dispersion equation. Numerical Methods<br>for Partial Differential Equations, 2008, 24, 1416-1429.                                  | 2.0 | 64        |
| 205 | Solving systems of fractional differential equations by homotopy-perturbation method. Physics<br>Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 451-459.                | 0.9 | 122       |
| 206 | Existence of the mild solution for fractional semilinear initial value problems. Nonlinear Analysis:<br>Theory, Methods & Applications, 2008, 69, 3153-3159.                                     | 0.6 | 98        |
| 207 | On a fractional integral equation of periodic functions involving Weyl–Riesz operator in Banach<br>algebras. Journal of Mathematical Analysis and Applications, 2008, 339, 1210-1219.            | 0.5 | 48        |
| 208 | Generalized differential transform method: Application to differential equations of fractional order.<br>Applied Mathematics and Computation, 2008, 197, 467-477.                                | 1.4 | 176       |
| 209 | A generalized differential transform method for linear partial differential equations of fractional<br>order. Applied Mathematics Letters, 2008, 21, 194-199.                                    | 1.5 | 310       |
| 210 | Application of generalized differential transform method to multi-order fractional differential equations. Communications in Nonlinear Science and Numerical Simulation, 2008, 13, 1642-1654.    | 1.7 | 156       |
| 211 | Solving systems of fractional differential equations using differential transform method. Journal of Computational and Applied Mathematics, 2008, 215, 142-151.                                  | 1.1 | 166       |
| 212 | Application of homotopy-perturbation method to fractional IVPs. Journal of Computational and Applied Mathematics, 2008, 216, 574-584.                                                            | 1.1 | 75        |
| 213 | A novel method for nonlinear fractional partial differential equations: Combination of DTM and generalized Taylor's formula. Journal of Computational and Applied Mathematics, 2008, 220, 85-95. | 1.1 | 119       |
| 214 | Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order. Chaos, Solitons and Fractals, 2008, 36, 167-174.                              | 2.5 | 334       |
| 215 | Using an enhanced homotopy perturbation method in fractional differential equations via deforming the linear part. Computers and Mathematics With Applications, 2008, 56, 3138-3149.             | 1.4 | 68        |
| 216 | Analytic study on time-fractional SchrĶdinger equations: exact solutions by GDTM. Journal of<br>Physics: Conference Series, 2008, 96, 012066.                                                    | 0.3 | 15        |

| #   | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | ANALYTICAL COMPARISON BETWEEN THE HOMOTOPY PERTURBATION METHOD AND VARIATIONAL ITERATION<br>METHOD FOR DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER. International Journal of Modern Physics<br>B, 2008, 22, 4041-4058. | 1.0 | 14        |
| 218 | Solutions to the problem of prey and predator and the epidemic model via differential transform method. Kybernetes, 2008, 37, 1180-1188.                                                                              | 1.2 | 13        |
| 219 | Solving a system of fourthâ€order obstacle boundary value problems by differential transform method.<br>Kybernetes, 2008, 37, 315-325.                                                                                | 1.2 | 0         |
| 220 | Numerical Solutions of Two Forms of Blasius Equation on a Half-Infinite Domain. Journal of Algorithms and Computational Technology, 2008, 2, 359-370.                                                                 | 0.4 | 3         |
| 221 | Differential Transform Technique for Solving Fifth-Order Boundary Value Problems. Mathematical and Computational Applications, 2008, 13, 113-121.                                                                     | 0.7 | 1         |
| 222 | Application of Homotopy Perturbation Method to Singularly Perturbed Volterra Integral Equations.<br>Journal of Applied Sciences, 2008, 8, 1073-1078.                                                                  | 0.1 | 8         |
| 223 | Numerical Approximations of a Dynamic System Containing Fractional Derivatives. Journal of Applied Sciences, 2008, 8, 1079-1084.                                                                                      | 0.1 | 6         |
| 224 | Fractional Green's function for fractional partial differential equations. Journal Europeen Des<br>Systemes Automatises, 2008, 42, 639-651.                                                                           | 0.3 | 0         |
| 225 | Approximate analytical solution of the space-and time-fractional Burgers equations. Journal Europeen<br>Des Systemes Automatises, 2008, 42, 627-638.                                                                  | 0.3 | 1         |
| 226 | An algorithm for solving the fractional convection–diffusion equation with nonlinear source term.<br>Communications in Nonlinear Science and Numerical Simulation, 2007, 12, 1283-1290.                               | 1.7 | 53        |
| 227 | Numerical approach to differential equations of fractional order. Journal of Computational and Applied Mathematics, 2007, 207, 96-110.                                                                                | 1.1 | 209       |
| 228 | Comparison between the homotopy perturbation method and the variational iteration method for<br>linear fractional partial differential equations. Computers and Mathematics With Applications, 2007,<br>54, 910-919.  | 1.4 | 139       |
| 229 | Numerical comparison of methods for solving linear differential equations of fractional order.<br>Chaos, Solitons and Fractals, 2007, 31, 1248-1255.                                                                  | 2.5 | 284       |
| 230 | Comparing numerical methods for solving fourth-order boundary value problems. Applied<br>Mathematics and Computation, 2007, 188, 1963-1968.                                                                           | 1.4 | 56        |
| 231 | Modified Householder iterative method for nonlinear equations. Applied Mathematics and Computation, 2007, 190, 1534-1539.                                                                                             | 1.4 | 26        |
| 232 | Numerical comparison of methods for solving a special fourth-order boundary value problem. Applied<br>Mathematics and Computation, 2007, 191, 218-224.                                                                | 1.4 | 35        |
| 233 | Numerical approximations and Padé approximants for a fractional population growth model. Applied Mathematical Modelling, 2007, 31, 1907-1914.                                                                         | 2.2 | 59        |
| 234 | Homotopy perturbation method for nonlinear partial differential equations of fractional order.<br>Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 365, 345-350.                            | 0.9 | 315       |

| #   | Article                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | A reliable treatment of homotopy perturbation method for Klein–Gordon equations. Physics Letters,<br>Section A: General, Atomic and Solid State Physics, 2007, 365, 351-357.                         | 0.9 | 67        |
| 236 | Numerical solution of Fokker–Planck equation with space- and time-fractional derivatives. Physics<br>Letters, Section A: General, Atomic and Solid State Physics, 2007, 369, 349-358.                | 0.9 | 70        |
| 237 | Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 370, 379-387. | 0.9 | 177       |
| 238 | Solving fractional diffusion and wave equations by modified homotopy perturbation method. Physics<br>Letters, Section A: General, Atomic and Solid State Physics, 2007, 370, 388-396.                | 0.9 | 124       |
| 239 | On the existence and uniqueness of solutions of a class of fractional differential equations. Journal of Mathematical Analysis and Applications, 2007, 334, 1-10.                                    | 0.5 | 84        |
| 240 | Fractional green function for linear time-fractional inhomogeneous partial differential equations in fluid mechanics. Journal of Applied Mathematics and Computing, 2007, 24, 167-178.               | 1.2 | 42        |
| 241 | A reliable algorithm for solving tenth-order boundary value problems. Numerical Algorithms, 2007, 44, 147-158.                                                                                       | 1.1 | 10        |
| 242 | Application of Variational Iteration Method to Nonlinear Differential Equations of Fractional Order.<br>International Journal of Nonlinear Sciences and Numerical Simulation, 2006, 7, .             | 0.4 | 496       |
| 243 | Decomposition method for solving a system of fourth-order obstacle boundary value problems.<br>Applied Mathematics and Computation, 2006, 175, 923-931.                                              | 1.4 | 6         |
| 244 | Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition method.<br>Applied Mathematics and Computation, 2006, 177, 488-494.                                         | 1.4 | 293       |
| 245 | Approximate solutions for boundary value problems of time-fractional wave equation. Applied Mathematics and Computation, 2006, 181, 767-774.                                                         | 1.4 | 82        |
| 246 | A numerical scheme for the solution of multi-order fractional differential equations. Applied Mathematics and Computation, 2006, 182, 761-770.                                                       | 1.4 | 40        |
| 247 | Numerical methods for fourth-order fractional integro-differential equations. Applied Mathematics and Computation, 2006, 182, 754-760.                                                               | 1.4 | 115       |
| 248 | Decomposition method for solving fractional Riccati differential equations. Applied Mathematics and Computation, 2006, 182, 1083-1092.                                                               | 1.4 | 175       |
| 249 | Variational iteration method for solving nonlinear boundary value problems. Applied Mathematics and Computation, 2006, 183, 1351-1358.                                                               | 1.4 | 76        |
| 250 | Non-perturbative analytical solutions of the space- and time-fractional Burgers equations. Chaos,<br>Solitons and Fractals, 2006, 28, 930-937.                                                       | 2.5 | 140       |
| 251 | Analytical approach to linear fractional partial differential equations arising in fluid mechanics.<br>Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 355, 271-279.      | 0.9 | 205       |
| 252 | An efficient method for solving systems of fractional integro-differential equations. Computers and<br>Mathematics With Applications, 2006, 52, 459-470.                                             | 1.4 | 63        |

| #   | ARTICLE                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Application of He's variational iteration method to Helmholtz equation. Chaos, Solitons and Fractals, 2006, 27, 1119-1123.                                                                           | 2.5 | 371       |
| 254 | A reliable algorithm for solving fourth-order boundary value problems. Journal of Applied<br>Mathematics and Computing, 2006, 22, 185-197.                                                           | 1.2 | 13        |
| 255 | An explicit and numerical solutions of the fractional KdV equation. Mathematics and Computers in Simulation, 2005, 70, 110-118.                                                                      | 2.4 | 135       |
| 256 | Numerical solutions for systems of fractional differential equations by the decomposition method.<br>Applied Mathematics and Computation, 2005, 162, 1351-1365.                                      | 1.4 | 117       |
| 257 | Analytical approximate solution for fractional heat-like and wave-like equations with variable coefficients using the decomposition method. Applied Mathematics and Computation, 2005, 165, 459-472. | 1.4 | 89        |
| 258 | An approximate solution for a fractional diffusion-wave equation using the decomposition method.<br>Applied Mathematics and Computation, 2005, 165, 473-483.                                         | 1.4 | 63        |
| 259 | A numerical scheme for the solution of Sivashinsky equation. Applied Mathematics and Computation, 2005, 168, 1273-1280.                                                                              | 1.4 | 5         |
| 260 | Analytic and approximate solutions of the space- and time-fractional telegraph equations. Applied Mathematics and Computation, 2005, 170, 1126-1134.                                                 | 1.4 | 139       |
| 261 | Approximate wave solutions for generalized Benjamin–Bona–Mahony–Burgers equations. Applied<br>Mathematics and Computation, 2005, 171, 281-292.                                                       | 1.4 | 65        |
| 262 | Lyapunov stability solutions of fractional integrodifferential equations. International Journal of Mathematics and Mathematical Sciences, 2004, 2004, 2503-2507.                                     | 0.3 | 59        |
| 263 | ANALYTICAL APPROXIMATE SOLUTIONS OF NONLINEAR OSCILLATORS BY THE MODIFIED DECOMPOSITION METHOD. International Journal of Modern Physics C, 2004, 15, 967-979.                                        | 0.8 | 15        |
| 264 | Newtonian and non-Newtonian flow in a channel obstructed by an antisymmetric array of cylinders.<br>Journal of Non-Newtonian Fluid Mechanics, 1991, 40, 231-260.                                     | 1.0 | 14        |
| 265 | Solutions of Volterra Singular Time-Fractional PIDEs. SSRN Electronic Journal, 0, , .                                                                                                                | 0.4 | 0         |
| 266 | HYPERCHAOTIC DYNAMICS OF A NEW FRACTIONAL DISCRETE-TIME SYSTEM. Fractals, 0, , 2140034.                                                                                                              | 1.8 | 3         |
| 267 | Extension of the Tricomi problem for a loaded parabolic–hyperbolic equation with a characteristic<br>line of change of type. Mathematical Methods in the Applied Sciences, 0, , .                    | 1.2 | 1         |