
Jiefang Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5423607/publications.pdf Version: 2024-02-01

LIFEANC 7HU

#	Article	IF	CITATIONS
1	Functional polyethylene separator with impurity entrapment and faster Li+ ions transfer for superior lithium-ion batteries. Journal of Colloid and Interface Science, 2022, 607, 742-751.	5.0	14
2	A bifunctional MnxCo3-xO4-decorated separator for efficient Li-Lil-O2 batteries: A novel strategy to promote redox coupling and inhibit redox shuttling. Chemical Engineering Journal, 2022, 428, 131105.	6.6	8
3	Bamboo-charcoal-loaded graphitic carbon nitride for photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 3733-3740.	3.8	25
4	Enhanced rate capability and high-voltage cycling stability of single-crystal nickel-rich cathode by surface anchoring dielectric BaTiO3. Journal of Colloid and Interface Science, 2022, 619, 65-74.	5.0	8
5	Metal Ti quantum chain-inlaid 2D NaSn2(PO4)3/H-doped hard carbon hybrid electrodes with ultrahigh energy storage density. Chemical Engineering Journal, 2021, 403, 126311.	6.6	14
6	Ionic liquids for high performance lithium metal batteries. Journal of Energy Chemistry, 2021, 59, 320-333.	7.1	155
7	Optimizing carbon coating parameters for obtaining SiO2/C anodes with improved electrochemical performance. Journal of Solid State Electrochemistry, 2021, 25, 1339-1351.	1.2	11
8	Multifunctional separators for high-performance lithium ion batteries. Journal of Power Sources, 2021, 499, 229973.	4.0	51
9	Ultraviolet-cured polyethylene oxide-based composite electrolyte enabling stable cycling of lithium battery at low temperature. Journal of Colloid and Interface Science, 2021, 596, 257-266.	5.0	25
10	Evaporation and in-situ gelation induced porous hybrid film without template enhancing the performance of lithium ion battery separator. Journal of Colloid and Interface Science, 2021, 595, 142-150.	5.0	13
11	Singleâ€ion Conducting Soft Electrolytes for Semiâ€Solid Lithium Metal Batteries Enabling Cell Fabrication and Operation under Ambient Conditions. Advanced Energy Materials, 2021, 11, 2101813.	10.2	26
12	Graphitic carbon nitride heterojunction photocatalysts for solar hydrogen production. International Journal of Hydrogen Energy, 2021, 46, 37242-37267.	3.8	36
13	Multifunctional surfactants for synthesizing high-performance energy storage materials. Energy Storage Materials, 2021, 43, 1-19.	9.5	36
14	Recent Progress in the Synthesis and Biomedical Properties of Natural Biopolymer Composites. Current Medicinal Chemistry, 2021, 28, 8243-8266.	1.2	4
15	Redox Dual-Cocatalyst-Modified CdS Double-Heterojunction Photocatalysts for Efficient Hydrogen Production. ACS Applied Materials & Interfaces, 2020, 12, 46073-46083.	4.0	66
16	NaSn2(PO4)3 submicro-particles for high performance Na/Li mixed-ion battery anodes. Journal of Alloys and Compounds, 2020, 844, 156082.	2.8	6
17	Ni–Ag Nanostructure-Modified Graphitic Carbon Nitride for Enhanced Performance of Solar-Driven Hydrogen Production from Ethanol. ACS Applied Energy Materials, 2020, 3, 10131-10138.	2.5	8
18	PEDOT:PSS @Molecular Sieve as Dualâ€Functional Additive to Enhance Electrochemical Performance and Stability of Niâ€Rich NMC Lithiumâ€Ion Batteries. Energy Technology, 2020, 8, 2000339.	1.8	4

#	Article	IF	CITATIONS
19	In-situ preparation of LixSn-Li2O–LiF/reduced graphene oxide composite anode material with large capacity and high initial Coulombic efficiency. Journal of Power Sources, 2020, 463, 228213.	4.0	11
20	Low cost Na2FeSiO4/H–N-doped hard carbon nanosphere hybrid cathodes for high energy and power sodium-ion supercapacitors. Journal of Alloys and Compounds, 2020, 842, 155797.	2.8	6
21	ZnO nanomaterials: strategies for improvement of photocatalytic and photoelectrochemical activities. , 2020, , 231-244.		4
22	Alternateâ€stacked Li 4 Ti 5 O 12 nanosheets/dâ€Ti 3 C 2 flexible film as a current collectorâ€free, highâ€capacity and robust cathode for rechargeable Mg batteries. Nano Select, 2020, 1, 1-11.	1.9	8
23	Construction of silica-oxygen-borate hybrid networks on Al2O3-coated polyethylene separators realizing multifunction for high-performance lithium ion batteries. Journal of Power Sources, 2020, 472, 228445.	4.0	36
24	Ionic Conductive Thermoplastic Polymer Welding Layer for Low Electrode/Solid Electrolyte Interface Resistance. ACS Applied Energy Materials, 2020, 3, 7011-7019.	2.5	8
25	Dualâ€Scale Al ₂ O ₃ Particles Coating for Highâ€Performance Separator and Lithium Metal Anode. Energy Technology, 2020, 8, 1901429.	1.8	19
26	C60/Na4FeO3/Li3V2(PO4)3/soft carbon quaternary hybrid superstructure for high-performance battery-supercapacitor hybrid devices. NPG Asia Materials, 2020, 12, .	3.8	15
27	Sulfur and potassium co-doped graphitic carbon nitride for highly enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 273, 119050.	10.8	138
28	Highly-ordered microstructure and well performance of LiNi0.6Mn0.2Co0.2O2 cathode material via the continuous microfluidic synthesis. Chemical Engineering Journal, 2020, 394, 124846.	6.6	19
29	Binary superlattice ceramic membrane-coated soft carbon/hard carbon microspheres for high energy mixed-ion batteries. Journal of Power Sources, 2019, 438, 226980.	4.0	15
30	Enhanced thermal stability and lithium ion conductivity of polyethylene separator by coating colloidal SiO2 nanoparticles with porous shell. Journal of Colloid and Interface Science, 2019, 554, 29-38.	5.0	57
31	Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries. Journal of Power Sources, 2019, 441, 227175.	4.0	168
32	Nanocoating inside porous PE separator enables enhanced ionic transport of GPE and stable cycling of Li-metal anode. Research on Chemical Intermediates, 2019, 45, 4959-4973.	1.3	4
33	A simple method to enhance the lifetime of Ni-rich cathode by using low-temperature dehydratable molecular sieve as water scavenger. Journal of Power Sources, 2019, 435, 226773.	4.0	16
34	Rational design and kinetics study of flexible sodium-ion full batteries based on binder-free composite film electrodes. Journal of Materials Chemistry A, 2019, 7, 9890-9902.	5.2	31
35	Surface activated polyethylene separator promoting Li+ ion transport in gel polymer electrolytes and cycling stability of Li-metal anode. Chemical Engineering Journal, 2019, 368, 321-330.	6.6	48
36	Recent Development of Photocatalysts Containing Carbon Species: A Review. Catalysts, 2019, 9, 20.	1.6	10

#	Article	IF	CITATIONS
37	New Insight into Ethylenediaminetetraacetic Acid Tetrasodium Salt as a Sacrificing Sodium Ion Source for Sodium-Deficient Cathode Materials for Full Cells. ACS Applied Materials & Interfaces, 2019, 11, 5957-5965.	4.0	26
38	Gel Polymer Electrolyte with High Li ⁺ Transference Number Enhancing the Cycling Stability of Lithium Anodes. ACS Applied Materials & Interfaces, 2019, 11, 5168-5175.	4.0	64
39	A Special Issue on Functional Nanomaterial for Energy and Environment. Science of Advanced Materials, 2019, 11, 1-4.	0.1	1
40	On the Stability of NaO ₂ in Na–O ₂ Batteries. ACS Applied Materials & Interfaces, 2018, 10, 13534-13541.	4.0	29
41	In situ constructed Ag/C conductive network enhancing the C-rate performance of Si based anode. Journal of Energy Storage, 2018, 17, 102-108.	3.9	11
42	UV curable organic-inorganic hybrid coatings on microporous polyethylene separator for enhancing mechanical and electrochemical performance. Journal of Alloys and Compounds, 2018, 743, 756-762.	2.8	19
43	High Li ⁺ Ionic Flux Separator Enhancing Cycling Stability of Lithium Metal Anode. ACS Sustainable Chemistry and Engineering, 2018, 6, 2961-2968.	3.2	45
44	Polyethylene separators modified by ultrathin hybrid films enhancing lithium ion transport performance and Li-metal anode stability. Electrochimica Acta, 2018, 259, 386-394.	2.6	56
45	A free standing Ru–TiC nanowire array/carbon textile cathode with enhanced stability for Li–O ₂ batteries. Journal of Materials Chemistry A, 2018, 6, 23659-23668.	5.2	12
46	Cellulose-based Nanocarriers as Platforms for Cancer Therapy. Current Pharmaceutical Design, 2018, 23, 5292-5300.	0.9	7
47	Polyethylene separator activated by hybrid coating improving Li+ ion transference number and ionic conductivity for Li-metal battery. Journal of Power Sources, 2017, 342, 816-824.	4.0	89
48	Towards an Understanding of Li ₂ O ₂ Evolution in Li–O ₂ Batteries: An Inâ€Operando Synchrotron Xâ€ r ay Diffraction Study. ChemSusChem, 2017, 10, 1592-1599.	3.6	29
49	In Situ Synthesis of Tungsten-Doped SnO ₂ and Graphene Nanocomposites for High-Performance Anode Materials of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 17163-17171.	4.0	58
50	Facile preparation of robust and superhydrophobic materials for self-cleaning and oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 18-25.	2.3	101
51	Highly efficient Ru/MnO2 nano-catalysts for Li-O2 batteries: Quantitative analysis of catalytic Li2O2 decomposition by operando synchrotron X-ray diffraction. Journal of Power Sources, 2017, 352, 208-215.	4.0	16
52	Potential Applications of Cellulose and Its Composites in Bone Repairment and Regeneration. Frontiers in Nanobiomedical Research, 2017, , 301-322.	0.1	0
53	Growth of NaO ₂ in Highly Efficient Na–O ₂ Batteries Revealed by Synchrotron In Operando X-ray Diffraction. ACS Energy Letters, 2017, 2, 2440-2444.	8.8	23
54	Recent Advances in Cellulose-Based Materials: Synthesis, Characterization, and Their Applications. International Journal of Polymer Science, 2016, 2016, 1-2.	1.2	2

#	Article	IF	CITATIONS
55	Microwave-Assisted Hydrothermal Synthesis of Cellulose/Hydroxyapatite Nanocomposites. Polymers, 2016, 8, 316.	2.0	24
56	Porous cellulose diacetate-SiO 2 composite coating on polyethylene separator for high-performance lithium-ion battery. Carbohydrate Polymers, 2016, 147, 517-524.	5.1	73
57	3-D binder-free graphene foam as a cathode for high capacity Li–O ₂ batteries. Journal of Materials Chemistry A, 2016, 4, 9767-9773.	5.2	30
58	ZnO based heterojunctions and their application in environmental photocatalysis. Nanotechnology, 2016, 27, 402001.	1.3	80
59	Homogeneous Cobalt/Vanadium Complexes as Precursors for Functionalized Mixed Oxides in Visibleâ€Lightâ€Driven Water Oxidation. ChemSusChem, 2016, 9, 2957-2966.	3.6	16
60	Constraining Si Particles within Graphene Foam Monolith: Interfacial Modification for Highâ€Performance Li ⁺ Storage and Flexible Integrated Configuration. Advanced Functional Materials, 2016, 26, 6797-6806.	7.8	82
61	Excellent rate capability and cycle life of Li metal batteries with ZrO2/POSS multilayer-assembled PE separators. Nano Energy, 2016, 28, 1-11.	8.2	125
62	Water-Based Organic–Inorganic Hybrid Coating for a High-Performance Separator. ACS Sustainable Chemistry and Engineering, 2016, 4, 3794-3802.	3.2	43
63	Binder-free nitrogen-doped carbon paper electrodes derived from polypyrrole/cellulose composite for Li–O2 batteries. Journal of Power Sources, 2016, 306, 559-566.	4.0	36
64	An Organic Catalyst for Li–O ₂ Batteries: Dilithium Quinoneâ€1,4â€Dicarboxylate. ChemSusChem, 2015, 8, 2198-2203.	3.6	13
65	Spectroscopy Applied to Engineering Materials. Journal of Spectroscopy, 2015, 2015, 1-2.	0.6	1
66	Fluorine-Doped Tin Oxide Nanocrystal/Reduced Graphene Oxide Composites as Lithium Ion Battery Anode Material with High Capacity and Cycling Stability. ACS Applied Materials & Interfaces, 2015, 7, 27486-27493.	4.0	53
67	Self-Assembly of PEI/SiO ₂ on Polyethylene Separators for Li-Ion Batteries with Enhanced Rate Capability. ACS Applied Materials & Interfaces, 2015, 7, 3314-3322.	4.0	130
68	Layer-by-Layer Deposition of Organic–Inorganic Hybrid Multilayer on Microporous Polyethylene Separator to Enhance the Electrochemical Performance of Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2015, 7, 20678-20686.	4.0	131
69	Chapter 10New Trend in Liquid Electrolytes for Electrochemical Energy Devices. , 2015, , 300-309.		0
70	Development and Fabrication of Advanced Materials for Energy and Environment Applications 2014. Journal of Nanomaterials, 2014, 2014, 1-2.	1.5	0
71	The Microwaveâ€Assisted Ionicâ€Liquid Method: A Promising Methodology in Nanomaterials. Chemistry - an Asian Journal, 2014, 9, 2378-2391.	1.7	24
72	Photocatalytic and antibacterial properties of Au-decorated Fe3O4@mTiO2 core–shell microspheres. Applied Catalysis B: Environmental, 2014, 156-157, 314-322.	10.8	58

#	Article	IF	CITATIONS
73	Photocatalytic activity of ZnO/Sn1â^'xZnxO2â^'x nanocatalysts: A synergistic effect of doping and heterojunction. Applied Catalysis B: Environmental, 2014, 148-149, 44-50.	10.8	25
74	Increased Cycling Efficiency of Lithium Anodes in Dimethyl Sulfoxide Electrolytes For Use in Li-O2 Batteries. ECS Electrochemistry Letters, 2014, 3, A62-A65.	1.9	50
75	A Ru–Co hybrid material based on a molecular photosensitizer and a heterogeneous catalyst for light-driven water oxidation. Physical Chemistry Chemical Physics, 2014, 16, 3661.	1.3	12
76	Graphene anchored with ZrO ₂ nanoparticles as anodes of lithium ion batteries with enhanced electrochemical performance. RSC Advances, 2014, 4, 8472-8480.	1.7	28
77	Pt/α-MnO 2 nanotube: A highly active electrocatalyst for Li–O 2 battery. Nano Energy, 2014, 10, 19-27.	8.2	54
78	Microwave synthesis of cellulose/CuO nanocomposites in ionic liquid and its thermal transformation to CuO. Carbohydrate Polymers, 2013, 91, 162-168.	5.1	38
79	Metal-enhanced fluorescence of OG-488 doped in Au@SiO2 core–shell nanoparticles. Materials Letters, 2013, 112, 169-172.	1.3	16
80	Hydrothermal synthesis and humidity sensing properties of size-controlled Zirconium Oxide (ZrO2) nanorods. Journal of Colloid and Interface Science, 2013, 396, 9-15.	5.0	67
81	Accelerated Electrochemical Decomposition of Li ₂ O ₂ under X-ray Illumination. Journal of Physical Chemistry Letters, 2013, 4, 4045-4050.	2.1	11
82	Microwave-assisted method for the synthesis of cellulose-based composites and their thermal transformation to Mn2O3. Industrial Crops and Products, 2013, 43, 751-756.	2.5	9
83	A facile approach to ZnO/CdS nanoarrays and their photocatalytic and photoelectrochemical properties. Applied Catalysis B: Environmental, 2013, 138-139, 175-183.	10.8	103
84	Microwave-solvothermal synthesis of Fe3O4 magnetic nanoparticles. Materials Letters, 2013, 107, 23-26.	1.3	68
85	Polyacrylamide–metal nanocomposites: one-pot synthesis, antibacterial properties, and thermal stability. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	8
86	Development and Fabrication of Advanced Materials for Energy and Environment Applications. Journal of Nanomaterials, 2013, 2013, 1-2.	1.5	8
87	Nanocomposites of cellulose/iron oxide: influence of synthesis conditions on their morphological behavior and thermal stability. Materials Science and Engineering C, 2012, 32, 1511-1517.	3.8	20
88	Simultaneous microwave-assisted synthesis, characterization, thermal stability, and antimicrobial activity of cellulose/AgCl nanocomposites. Biomass and Bioenergy, 2012, 47, 516-521.	2.9	34
89	Hydrothermal fabrication, characterization, and biological activity of cellulose/CaCO3 bionanocomposites. Carbohydrate Polymers, 2012, 88, 179-184.	5.1	27
90	lsolation and characterization of hemicelluloses extracted by hydrothermal pretreatment. Bioresource Technology, 2012, 114, 677-683.	4.8	51

#	Article	IF	CITATIONS
91	Photo-Catalytic Hydrogen Production. , 2012, , 1099-1121.		4
92	Photo-catalytic Hydrogen Photo-catalytic Hydrogen Production photocatalysis/photocatalytic hydrogen production. , 2012, , 7881-7901.		0
93	Solvothermal Synthesis of Crystalline Phase and Shape Controlled Sn ⁴⁺ -Doped TiO ₂ Nanocrystals: Effects of Reaction Solvent. ACS Applied Materials & Interfaces, 2011, 3, 1261-1268.	4.0	60
94	Nanostructured Materials for Photolytic Hydrogen Production. Green Energy and Technology, 2011, , 441-486.	0.4	4
95	Synthesis and characterization of the tellurium/calcium silicate nanocomposite. Materials Letters, 2011, 65, 424-426.	1.3	7
96	Hydrothermal preparation of boehmite-doped AgCl nanocubes and their characterization. Materials Letters, 2011, 65, 1531-1534.	1.3	10
97	Fabrication and characterization of Ag/calcium silicate core-shell nanocomposites. Materials Letters, 2011, 65, 3069-3071.	1.3	7
98	Rapid microwave-assisted preparation and characterization of cellulose–silver nanocomposites. Carbohydrate Polymers, 2011, 83, 422-429.	5.1	63
99	Preparation and characterization of TiO2/carbon composite thin films with enhanced photocatalytic activity. Journal of Molecular Catalysis A, 2011, 335, 136-144.	4.8	24
100	Microwave-assisted synthesis and characterization of cellulose-carbonated hydroxyapatite nanocomposites in NaOH–urea aqueous solution. Materials Letters, 2010, 64, 2223-2225.	1.3	36
101	Synthesis of cellulose–calcium silicate nanocomposites in ethanol/water mixed solvents and their characterization. Carbohydrate Polymers, 2010, 80, 270-275.	5.1	75
102	Microwave-assisted synthesis of hierarchical Bi2O3 spheres assembled from nanosheets with pore structure. Materials Letters, 2010, 64, 1524-1527.	1.3	33
103	Rapid microwave-assisted synthesis and characterization of cellulose-hydroxyapatite nanocomposites in N,N-dimethylacetamide solvent. Carbohydrate Research, 2010, 345, 1046-1050.	1.1	38
104	Hydrothermal Synthesis of Luminescent Wollastonite-CePO ₄ Nanocomposites. Advanced Materials Research, 2010, 92, 125-130.	0.3	0
105	Recent Progress on Fabrication of Calcium-Based Inorganic Biodegradable Nanomaterials. Recent Patents on Nanotechnology, 2010, 4, 164-170.	0.7	28
106	Hydrothermal synthesis of relatively uniform CePO4@LaPO4 one-dimensional nanostructures with highly improved luminescence. Journal of Alloys and Compounds, 2010, 492, 559-563.	2.8	14
107	Hydrothermal Synthesis and Characterization of Cellulose-Carbonated Hydroxyapatite Nanocomposites in NaOH–Urea Aqueous Solution. Science of Advanced Materials, 2010, 2, 210-214.	0.1	30
108	A facile solvothermal route to synthesis of γ-alumina with bundle-like and flower-like morphologies. Materials Letters, 2009, 63, 881-883.	1.3	37

#	Article	IF	CITATIONS
109	Hydrothermal–polyol route to synthesis of β-Ni(OH)2 and NiO in mixed solvents of 1,4-butanediol and water. Materials Letters, 2009, 63, 1791-1793.	1.3	31
110	Solvothermal Synthesis and Characterization of Hierarchically Nanostructured Hydroxyapatite Hollow Spheres. European Journal of Inorganic Chemistry, 2009, 2009, 5522-5526.	1.0	67
111	Nanostructured materials for photocatalytic hydrogen production. Current Opinion in Colloid and Interface Science, 2009, 14, 260-269.	3.4	323
112	Hydrothermal synthesis and characterization of CePO4/C core-shell nanorods. Materials Letters, 2009, 63, 2513-2515.	1.3	11
113	Ordered mesoporous Ag–TiO2–KIT-6 heterostructure: synthesis, characterization and photocatalysis. Journal of Materials Chemistry, 2009, 19, 2771.	6.7	56
114	Network Structured SnO ₂ /ZnO Heterojunction Nanocatalyst with High Photocatalytic Activity. Inorganic Chemistry, 2009, 48, 1819-1825.	1.9	368
115	Photocatalytic Activity of Ag/ZnO Heterostructure Nanocatalyst: Correlation between Structure and Property. Journal of Physical Chemistry C, 2008, 112, 10773-10777.	1.5	420
116	Luminescence and Photocatalytic Activity of ZnO Nanocrystals:  Correlation between Structure and Property. Inorganic Chemistry, 2007, 46, 6675-6682.	1.9	514
117	A simple route to synthesis of BaCO3 nanostructures in water/ethylene glycol mixed solvents. Materials Letters, 2007, 61, 5133-5136.	1.3	21
118	Simultaneous and Rapid Microwave Synthesis of Polyacrylamideâ^'Metal Sulfide (Ag2S, Cu2S, HgS) Nanocomposites. Journal of Physical Chemistry C, 2007, 111, 3920-3926.	1.5	83
119	Microwave-assisted Fabrication and Characterization of BaCO3Nanorods. Chemistry Letters, 2006, 35, 1138-1139.	0.7	9
120	Fe3+-TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 180, 196-204.	2.0	436
121	Microwave-Assisted One-Step Synthesis of Polyacrylamideâ~'Metal (M = Ag, Pt, Cu) Nanocomposites in Ethylene Glycol. Journal of Physical Chemistry B, 2006, 110, 8593-8597.	1.2	126
122	Hydrothermal doping method for preparation of Cr3+-TiO2 photocatalysts with concentration gradient distribution of Cr3+. Applied Catalysis B: Environmental, 2006, 62, 329-335.	10.8	418
123	A Facile Hydrothermal Route to Flower-Like Cobalt Hydroxide and Oxide. European Journal of Inorganic Chemistry, 2006, 2006, 4787-4792.	1.0	133
124	High activity TiO2 Photocatalysts Prepared by a Modified Sol–gel Method: Characterization and their Photocatalytic Activity for the Degradation of XRG and X-GL. Topics in Catalysis, 2005, 35, 261-268.	1.3	48
125	Preparation of high photocatalytic activity TiO2 with a bicrystalline phase containing anatase and TiO2 (B). Materials Letters, 2005, 59, 3378-3381.	1.3	58
126	Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. Journal of Molecular Catalysis A, 2004, 216, 35-43.	4.8	496

#	Article	IF	CITATIONS
127	Enhanced Storage and Interface Structure Stability of NCM811 Cathodes for Lithiumâ€lon Batteries by Hydrophobic Fluoroalkylsilanes Modification. Energy Technology, 0, , .	1.8	3