Clare Blackburn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5423523/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification and Characterization of Thymic Epithelial Progenitor Cells. Immunity, 2002, 16, 803-814.	6.6	251
2	Extensive Hematopoietic Stem Cell Generation in the AGM Region via Maturation of VE-Cadherin+CD45+ Pre-Definitive HSCs. Cell Stem Cell, 2008, 3, 99-108.	5.2	242
3	Changes in primary lymphoid organs with aging. Seminars in Immunology, 2012, 24, 309-320.	2.7	238
4	Thymic involution and rising disease incidence with age. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1883-1888.	3.3	228
5	Gcm2 and Foxn1 mark early parathyroid- and thymus-specific domains in the developing third pharyngeal pouch. Mechanisms of Development, 2001, 103, 141-143.	1.7	216
6	Developing a new paradigm for thymus organogenesis. Nature Reviews Immunology, 2004, 4, 278-289.	10.6	207
7	Functional evidence for a single endodermal origin for the thymic epithelium. Nature Immunology, 2004, 5, 546-553.	7.0	187
8	Regeneration of the aged thymus by a single transcription factor. Development (Cambridge), 2014, 141, 1627-1637.	1.2	160
9	An organized and functional thymus generated from FOXN1-reprogrammed fibroblasts. Nature Cell Biology, 2014, 16, 902-908.	4.6	150
10	Foxn1 Regulates Lineage Progression in Cortical and Medullary Thymic Epithelial Cells But Is Dispensable for Medullary Sublineage Divergence. PLoS Genetics, 2011, 7, e1002348.	1.5	143
11	The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential. Nature Immunology, 2012, 13, 412-419.	7.0	132
12	Microenvironmental reprogramming of thymic epithelial cells to skin multipotent stem cells. Nature, 2010, 466, 978-982.	13.7	116
13	Dynamics of thymus organogenesis and colonization in early human development. Development (Cambridge), 2013, 140, 2015-2026.	1.2	112
14	Structure and function of the thymic microenvironment. Frontiers in Bioscience - Landmark, 2011, 16, 2461.	3.0	112
15	Identification of a Bipotent Epithelial Progenitor Population in the Adult Thymus. Cell Reports, 2016, 14, 2819-2832.	2.9	95
16	FOXN1 in thymus organogenesis and development. European Journal of Immunology, 2016, 46, 1826-1837.	1.6	90
17	Identification of Plet-1 as a specific marker of early thymic epithelial progenitor cells. Proceedings of the United States of America, 2008, 105, 961-966.	3.3	86
18	A developmental look at thymus organogenesis: where do the non-hematopoietic cells in the thymus come from?. Current Opinion in Immunology, 2003, 15, 225-232.	2.4	85

CLARE BLACKBURN

#	Article	IF	CITATIONS
19	Disabling chronic conditions in childhood and socioeconomic disadvantage: a systematic review and meta-analyses of observational studies. BMJ Open, 2015, 5, e007062.	0.8	82
20	Bmp4 and Noggin expression during early thymus and parathyroid organogenesis. Gene Expression Patterns, 2006, 6, 794-799.	0.3	79
21	One for all and all for one: thymic epithelial stem cells and regeneration. Trends in Immunology, 2002, 23, 391-395.	2.9	69
22	Inactivation of the RB family prevents thymus involution and promotes thymic function by direct control of Foxn1 expression. Journal of Experimental Medicine, 2013, 210, 1087-1097.	4.2	59
23	EphB–ephrin-B2 interactions are required for thymus migration during organogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13414-13419.	3.3	50
24	IL-17A–Induced PLET1 Expression Contributes to Tissue Repair and Colon Tumorigenesis. Journal of Immunology, 2017, 199, 3849-3857.	0.4	49
25	Foxn1 Is Dynamically Regulated in Thymic Epithelial Cells during Embryogenesis and at the Onset of Thymic Involution. PLoS ONE, 2016, 11, e0151666.	1.1	45
26	A critical role for lipophosphoglycan in proinflammatory responses of dendritic cells toLeishmania mexicana. European Journal of Immunology, 2005, 35, 476-486.	1.6	43
27	Thymus-Associated Parathyroid Hormone Has Two Cellular Origins with Distinct Endocrine and Immunological Functions. PLoS Genetics, 2010, 6, e1001251.	1.5	43
28	Heterologous expression of the filarial nematode alt gene products reveals their potential to inhibit immune function. BMC Biology, 2005, 3, 8.	1.7	40
29	New serum-free in vitro culture technique for midgestation mouse embryos. Genesis, 2003, 35, 164-168.	0.8	32
30	Identification of a tandem duplicated array in the Rhox $\hat{I}\pm$ locus on mouse chromosome X. Mammalian Genome, 2006, 17, 178-187.	1.0	30
31	Canonical Notch signaling controls the early thymic epithelial progenitor cell state and emergence of the medullary epithelial lineage in fetal thymus development. Development (Cambridge), 2020, 147, .	1.2	27
32	Realâ€ŧime imaging of <i>Leishmania mexicana</i> â€ɨnfected early phagosomes: a study using primary macrophages generated from green fluorescent proteinâ€Rab5 transgenic mice. FASEB Journal, 2009, 23, 483-491.	0.2	22
33	A novel method for the generation of reaggregated organotypic cultures that permits juxtaposition of defined cell populations. Genesis, 2009, 47, 346-351.	0.8	22
34	EVA regulates thymic stromal organisation and early thymocyte development. Biochemical and Biophysical Research Communications, 2007, 356, 334-340.	1.0	18
35	Long-Term Persistence of Functional Thymic Epithelial Progenitor Cells In Vivo under Conditions of Low FOXN1 Expression. PLoS ONE, 2014, 9, e114842.	1.1	17
36	Construction of a functional thymic microenvironment from pluripotent stem cells for the induction of central tolerance. Regenerative Medicine, 2015, 10, 317-329.	0.8	16

CLARE BLACKBURN

#	Article	IF	CITATIONS
37	Rapid constitutive generation of a specific peptide-MHC class II complex from intact exogenous protein in immature murine dendritic cells. European Journal of Immunology, 2002, 32, 3246-3255.	1.6	13
38	Uncompromised generation of a specific H-2DM-dependent peptide-MHC class Il complex from exogenous antigen inLeishmania mexicana-infected dendritic cells. European Journal of Immunology, 2003, 33, 3504-3513.	1.6	6
39	EuroStemCell: A European infrastructure for communication and engagement with stem cell research. Seminars in Cell and Developmental Biology, 2017, 70, 26-37.	2.3	3
40	Thymus and Parathyroid Organogenesis. , 2004, , 391-406.		3
41	Special focus issue on regenerative medicine in society: interdisciplinary perspectives (part I) – Foreword. Regenerative Medicine, 2017, 12, 577-580.	0.8	2
42	Special focus issue on regenerative medicine in society: interdisciplinary perspectives (part II) – Foreword. Regenerative Medicine, 2017, 12, 733-736.	0.8	2
43	Reply to Jiménez-Alonso et al., Schooling and Zhao, and Mortazavi: Further discussion on the immunological model of carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4319-E4321.	3.3	2
44	Serum-Free Culture of Mid-gestation Mouse Embryos: A Tool for the Study of Endoderm-Derived Organs. Methods in Molecular Biology, 2014, 1092, 183-194.	0.4	2
45	Thymus and Parathyroid Organogenesis. , 2014, , 869-897.		0
46	Generation of Tissue Organoids by Compaction Reaggregation. Methods in Molecular Biology, 2014, 1092, 143-151.	0.4	0