
Patrizia Castellani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5423497/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CXCR4 engagement triggers CD47 internalization and antitumor immunization in a mouse model of mesothelioma. EMBO Molecular Medicine, 2021, 13, e12344.	3.3	11
2	Rebalancing expression of HMGB1 redox isoforms to counteract muscular dystrophy. Science Translational Medicine, 2021, 13, .	5.8	26
3	The Role of Endoplasmic Reticulum in the Differential Endurance against Redox Stress in Cortical and Spinal Astrocytes from the Newborn SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis. Antioxidants, 2021, 10, 1392.	2.2	10
4	Therapeutic efficacy of proton transport inhibitors alone or in combination with cisplatinÂin triple negative and hormone sensitive breast cancer models. Cancer Medicine, 2021, 11, 183.	1.3	4
5	Increased myocardial 18F-FDG uptake as a marker of Doxorubicin-induced oxidative stress. Journal of Nuclear Cardiology, 2020, 27, 2183-2194.	1.4	29
6	A novel knock-in mouse model of cryopyrin-associated periodic syndromes with development of amyloidosis: Therapeutic efficacy of proton pump inhibitors. Journal of Allergy and Clinical Immunology, 2020, 145, 368-378.e13.	1.5	14
7	FDG uptake tracks the oxidative damage in diabetic skeletal muscle: An experimental study. Molecular Metabolism, 2020, 31, 98-108.	3.0	13
8	18F-Fluorodeoxyglucose Positron Emission Tomography Tracks the Heterogeneous Brain Susceptibility to the Hyperglycemia-Related Redox Stress. International Journal of Molecular Sciences, 2020, 21, 8154.	1.8	6
9	The Elusive Link Between Cancer FDG Uptake and Glycolytic Flux Explains the Preserved Diagnostic Accuracy of PET/CT in Diabetes. Translational Oncology, 2020, 13, 100752.	1.7	8
10	Mechanisms underlying the predictive power of high skeletal muscle uptake of FDG in amyotrophic lateral sclerosis. EJNMMI Research, 2020, 10, 76.	1.1	15
11	OP0106â€A NOVEL KNOCK-IN MOUSE MODEL OF CAPS THAT DEVELOPS AMYLOIDOSIS: THERAPEUTIC EFFIC/ OF PROTON PUMP INHIBITORS. , 2019, , .	ACY	0
12	Obligatory role of endoplasmic reticulum in brain FDG uptake. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1184-1196.	3.3	24
13	Restoring microenvironmental redox and pH homeostasis inhibits neoplastic cell growth and migration: therapeutic efficacy of esomeprazole plus sulfasalazine on 3-MCA-induced sarcoma. Oncotarget, 2017, 8, 67482-67496.	0.8	9
14	Proton pump inhibitors protect mice from acute systemic inflammation and induce long-term cross-tolerance. Cell Death and Disease, 2016, 7, e2304-e2304.	2.7	40
15	SAT0001â€Cryopyrin Associated Periodic Syndromes (CAPS): Investigations on Knock-In Mouse Model to Exploit Novel Approaches for the Modulation of the NLRP3 Inflammasome. Annals of the Rheumatic Diseases, 2015, 74, 650.1-650.	0.5	0
16	TLR Costimulation Causes Oxidative Stress with Unbalance of Proinflammatory and Anti-Inflammatory Cytokine Production. Journal of Immunology, 2014, 192, 5373-5381.	0.4	73
17	Inflammation, DAMPs, Tumor Development, and Progression: A Vicious Circle Orchestrated by Redox Signaling. Antioxidants and Redox Signaling, 2014, 20, 1086-1097.	2.5	61
18	The pharmacologic inhibition of the xc- antioxidant system improves the antitumor efficacy of COX inhibitors in the in vivo model of 3-MCA tumorigenesis. Carcinogenesis, 2013, 34, 620-626.	1.3	12

#	Article	IF	CITATIONS
19	Scheduleâ€dependent therapeutic efficacy of L19m TNF â€Î± and melphalan combined with gemcitabine. Cancer Medicine, 2013, 2, 478-487.	1.3	13
20	High-Mobility Group Box 1 Release and Redox Regulation Accompany Regeneration and Remodeling of Skeletal Muscle. Antioxidants and Redox Signaling, 2011, 15, 2161-2174.	2.5	61
21	Identification of a novel cell binding site of periostin involved in tumour growth. European Journal of Cancer, 2011, 47, 2221-2229.	1.3	48
22	Selective targeted delivery of the TNF-alpha receptor p75 and uteroglobin to the vasculature of inflamed tissues: a preliminary report. BMC Biotechnology, 2011, 11, 104.	1.7	9
23	The Cystine/Cysteine Cycle and GSH Are Independent and Crucial Antioxidant Systems in Malignant Melanoma Cells and Represent Druggable Targets. Antioxidants and Redox Signaling, 2011, 15, 2439-2453.	2.5	41
24	Therapyâ€induced antitumor vaccination in neuroblastomas by the combined targeting of ILâ€2 and TNFα. International Journal of Cancer, 2010, 127, 101-110.	2.3	50
25	CIITAâ€driven MHCâ€l positive tumor cells: Preventive vaccines and superior generators of antitumor CD4 ⁺ T lymphocytes for immunotherapy. International Journal of Cancer, 2010, 127, 1614-1624.	2.3	28
26	Redox remodeling: a candidate regulator of HMGB1 function in injured skeletal muscle. Annals of the New York Academy of Sciences, 2010, 1209, 83-90.	1.8	29
27	Alternative Splicing of the Angiogenesis Associated Extra-Domain B of Fibronectin Regulates the Accessibility of the B-C Loop of the Type III Repeat 8. PLoS ONE, 2010, 5, e9145.	1.1	18
28	Redox Remodeling Allows and Controls B-Cell Activation and Differentiation. Antioxidants and Redox Signaling, 2010, 13, 1145-1155.	2.5	83
29	Irradiated CIITA-positive mammary adenocarcinoma cells act as a potent anti-tumor-preventive vaccine by inducing tumor-specific CD4+ T cell priming and CD8+ T cell effector functions. International Immunology, 2009, 21, 655-665.	1.8	28
30	A novel human fibronectin cryptic sequence unmasked by the insertion of the angiogenesisâ€associated extra type III domain B. International Journal of Cancer, 2009, 125, 751-758.	2.3	27
31	DAMPs and inflammatory processes: the role of redox in the different outcomes. Journal of Leukocyte Biology, 2009, 86, 549-555.	1.5	96
32	Use of Uteroglobin for the Engineering of Polyvalent, Polyspecific Fusion Proteins. Journal of Biological Chemistry, 2009, 284, 26646-26654.	1.6	6
33	The redox state of the lung cancer microenvironment depends on the levels of thioredoxin expressed by tumor cells and affects tumor progression and response to prooxidants. International Journal of Cancer, 2008, 123, 1770-1778.	2.3	73
34	The thiol redox state of lymphoid organs is modified by immunization: Role of different immune cell populations. European Journal of Immunology, 2008, 38, 2419-2425.	1.6	66
35	Therapyâ€induced antitumor vaccination by targeting tumor necrosis factorâ€î± to tumor vessels in combination with melphalan. European Journal of Immunology, 2007, 37, 3381-3392.	1.6	41
36	CIITA-Induced MHC Class II Expression in Mammary Adenocarcinoma Leads to a Th1 Polarization of the Tumor Microenvironment, Tumor Rejection, and Specific Antitumor Memory. Clinical Cancer Research, 2006, 12, 3435-3443.	3.2	79

#	Article	IF	CITATIONS
37	Targeted Delivery of Tumor Necrosis Factor-α to Tumor Vessels Induces a Therapeutic T Cell–Mediated Immune Response that Protects the Host Against Syngeneic Tumors of Different Histologic Origin. Clinical Cancer Research, 2006, 12, 2575-2582.	3.2	85
38	Molecular Imaging of Atherosclerotic Plaques Using a Human Antibody Against the Extra-Domain B of Fibronectin. Circulation Research, 2004, 95, 1225-1233.	2.0	116
39	Expression of extradomain-B–containing fibronectin in subretinal choroidal neovascular membranes. American Journal of Ophthalmology, 2003, 135, 7-13.	1.7	16
40	Selective targeted delivery of TNF \hat{I} ± to tumor blood vessels. Blood, 2003, 102, 4384-4392.	0.6	218
41	Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clinical Cancer Research, 2003, 9, 571-9.	3.2	229
42	Occurrence of a Glioblastoma-associated Tenascin-C Isoform in Cerebral Cavernomas and Neighboring Vessels. Neurosurgery, 2002, 50, 838-842.	0.6	11
43	Enhancement of the antitumor properties of interleukin-2 by its targeted delivery to the tumor blood vessel extracellular matrix. Blood, 2002, 99, 1659-1665.	0.6	262
44	Differentiation between High- and Low-Grade Astrocytoma Using a Human Recombinant Antibody to the Extra Domain-B of Fibronectin. American Journal of Pathology, 2002, 161, 1695-1700.	1.9	131
45	Tenascin-C in astrocytic tumors. World Neurosurgery, 2002, 57, 286.	1.3	3
46	Selective targeting of tumoral vasculature: Comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. International Journal of Cancer, 2002, 102, 75-85.	2.3	321
47	Lack of specificity of endoglin expression for tumor blood vessels. International Journal of Cancer, 2001, 94, 579-585.	2.3	59
48	latrogenic dissection of the portal vein during TIPS procedure. European Radiology, 2000, 10, 930-934.	2.3	11
49	The Angiogenesis Marker ED-B+ Fibronectin Isoform in Intracranial Meningiomas. Acta Neurochirurgica, 2000, 142, 277-282.	0.9	15
50	Oncofetal matrix glycoproteins in cerebral arteriovenous malformations and neighbouring vessels. Journal of Neurology, Neurosurgery and Psychiatry, 2000, 68, 101-102.	0.9	3
51	A High-Affinity Human Antibody That Targets Tumoral Blood Vessels. Blood, 1999, 94, 192-198.	0.6	191
52	Identification of a Glioblastoma-Associated Tenascin-C Isoform by a High Affinity Recombinant Antibody. American Journal of Pathology, 1999, 154, 1345-1352.	1.9	104
53	Preparation of Phage Antibodies to the ED-A Domain of Human Fibronectin. Experimental Cell Research, 1998, 240, 244-251.	1.2	22
54	Accumulation of oncofetal fibronectin in the vessels of anaplastic meningiomas. Journal of Neurology, Neurosurgery and Psychiatry, 1998, 64, 412-413.	0.9	2

#	Article	IF	CITATIONS
55	Distribution of tenascin in human malignant gliomas is not related to cell proliferation Journal of Neurology, Neurosurgery and Psychiatry, 1997, 62, 290-291.	0.9	6
56	A pilot pharmacokinetic and immunoscintigraphic study with the technetium-99m-labeled monoclonal antibody BC-1 directed against oncofetal fibronectin in patients with brain tumors. Cancer, 1997, 80, 2484-2489.	2.0	30
57	A functional monoclonal antibody recognizing the human alpha 1â€integrin lâ€domain. Tissue Antigens, 1996, 48, 47-51.	1.0	27
58	Phage antibodies with pan-species recognition of the oncofoetal angiogenesis marker fibronectin ED-B domain. International Journal of Cancer, 1996, 68, 397-405.	2.3	145
59	Tenascin distribution in human brain tumours. Acta Neurochirurgica, 1995, 136, 44-50.	0.9	27
60	Distribution of oncofetal fibronectin isoforms in normal, hyperplastic and neoplastic human breast tissues. International Journal of Cancer, 1994, 59, 11-16.	2.3	136
61	The fibronectin isoform containing the ed-b oncofetal domain: A marker of angiogenesis. International Journal of Cancer, 1994, 59, 612-618.	2.3	283
62	Expression of N-CAM by Human Renal Cell Carcinomas Correlates with Growth Rate and Adhesive Properties. Experimental Cell Research, 1994, 214, 499-509.	1.2	11
63	Cell-Cycle Dependent Alternative Splicing of the Tenascin Primary Transcript. Cell Adhesion and Communication, 1994, 1, 307-317.	1.7	40
64	Comparative analysis of the expression of the extracellular matrix protein tenascin in normal human fetal, adult and tumor tissues. International Journal of Cancer, 1991, 47, 811-816.	2.3	138
65	Expression of tenascin and of the ED-B containing oncofetal fibronectin isoform in human cancer. Cell Differentiation and Development, 1990, 32, 401-408.	0.4	51
66	Transforming growth factor-β regulates the splicing pattern of fibronectin messenger RNA precursor. FEBS Letters, 1990, 261, 175-178.	1.3	119
67	Monoclonal antibodies in the analysis of fibronectin isoforms generated by alternative splicing of mRNA precursors in normal and transformed human cells Journal of Cell Biology, 1987, 104, 595-600.	2.3	200
68	Fibronectin Concentration in Plasma of Patients with Breast Cancer. Annals of the New York Academy of Sciences, 1986, 464, 454-456.	1.8	1
69	Fibronectin concentration in the plasma of patients with malignant and benign breast disease. Cancer Letters, 1986, 33, 317-323.	3.2	8
70	DNA-binding domains of human plasma fibronectin. pH and calcium ion modulation of fibronectin binding to DNA and heparin. FEBS Journal, 1986, 154, 533-538.	0.2	23
71	Large-scale procedure for the purification of fibronectin domains. Analytical Biochemistry, 1986, 155, 335-345.	1.1	66
72	Transformed human cells release different fibronectin variants than do normal cells Journal of Cell Biology, 1986, 103, 1671-1677.	2.3	126

#	Article	IF	CITATIONS
73	Elution of fibronectin proteolytic fragments from a hydroxyapatite chromatography column. A simple procedure for the purification of fibronectin domains. FEBS Journal, 1985, 146, 571-579.	0.2	80
74	Structural differences in the cell binding region of human fibronectin molecules isolated from cultured normal and tumor-derived human cells. FEBS Letters, 1985, 192, 71-74.	1.3	14
75	Characterization of synovial fluid fibronectin from patients with rheumatic inflammatory diseases and healthy subjects. Arthritis and Rheumatism, 1984, 27, 913-921.	6.7	49
76	Lack of sialic acid in synovial fluid fibronectin. FEBS Letters, 1984, 171, 285-288.	1.3	5
77	Fibronectin concentrations in pleural effusions of patients with malignant and non-malignant diseases. Cancer Letters, 1984, 22, 1-9.	3.2	22
78	Increased plasma fibronectin concentrations in tumor bearing mice. Cancer Letters, 1983, 21, 117-123.	3.2	9