Jinjuan Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/542292/publications.pdf

Version: 2024-02-01

331538 377752 1,667 34 21 34 citations h-index g-index papers 34 34 34 2464 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Photo-Fenton superwettable NiFe2O4/TA/PVDF composite membrane for organic pollutant degradation with successively oil-in-water separation. Chemosphere, 2022, 286, 131705.	4.2	24
2	Multifunctional 3D polydimethylsiloxane modified MoS2@biomass-derived carbon composite for oil/water separation and organic dye adsorption/photocatalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637, 128281.	2.3	12
3	Resource utilization of petroleum-contaminated soil to prepare persulfate activator by ferrate pretreatment and pyrolysis. Journal of Cleaner Production, 2022, 337, 130473.	4.6	10
4	Preparation of 3D superhydrophobic porous g-C3N4 nanosheets@carbonized kapok fiber composites for oil/water separation and treating organic pollutants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129298.	2.3	4
5	Bifunctional NiAlFe LDH-coated membrane for oil-in-water emulsion separation and photocatalytic degradation of antibiotic. Science of the Total Environment, 2021, 751, 141660.	3.9	41
6	Synthesis of Porphyrin Zr-MOFs for the Adsorption and Photodegradation of Antibiotics under Visible Light. ACS Omega, 2021, 6, 17228-17238.	1.6	28
7	Microwave-assisted synthesis of 3D Bi2MoO6 microspheres with oxygen vacancies for enhanced visible-light photocatalytic activity. Photochemical and Photobiological Sciences, 2020, 19, 1697-1706.	1.6	21
8	Fe ₃ O ₄ -Loaded g-C ₃ N ₄ /C-Layered Composite as a Ternary Photocatalyst for Tetracycline Degradation. ACS Omega, 2020, 5, 30980-30988.	1.6	27
9	Microwave Solvothermal Synthesis of Three-Dimensional Bi ₂ MoO ₆ Microspheres with Enhanced Photocatalytic Activity. ACS Omega, 2020, 5, 28037-28045.	1.6	11
10	Fe (III)â€grafted Bi ₂ MoO ₆ nanoplates for enhanced photocatalytic activities on tetracycline degradation and HMF oxidation. Applied Organometallic Chemistry, 2019, 33, e5187.	1.7	23
11	Synthesis of MgAl LDH/Acidified g-C ₃ N ₄ Heterojunction Photocatalyst for Improved Tetracycline Hydrochloride Degradation Activity. Nano, 2019, 14, 1950066.	0.5	13
12	Facile oneâ€step synthesis of broken caseâ€like carbonâ€doped g ₃ N ₄ for photocatalytic degradation of benzene. Applied Organometallic Chemistry, 2019, 33, e4966.	1.7	6
13	Facile Fabrication of C–TiO ₂ Nanocomposites with Enhanced Photocatalytic Activity for Degradation of Tetracycline. ACS Omega, 2019, 4, 21063-21071.	1.6	33
14	Facile fabrication of BiOCl/RGO/protonated g-C3N4 ternary nanocomposite as Z-scheme photocatalyst for tetracycline degradation and benzyl alcohol oxidation. Journal of Materials Science, 2019, 54, 1275-1290.	1.7	26
15	Fabrication of ZnAl mixed metal-oxides/RGO nanohybrid composites with enhanced photocatalytic activity under visible light. Applied Surface Science, 2018, 441, 599-606.	3.1	29
16	Improved ciprofloxacin removal by a Fe(VI)-Fe3O4/graphene system under visible light irradiation. Water Science and Technology, 2018, 2017, 527-533.	1.2	3
17	One-step hydrothermal synthesis of peony-like Ag/Bi2WO6 as efficient visible light-driven photocatalyst toward organic pollutants degradation. Journal of Materials Science, 2018, 53, 4848-4860.	1.7	36
18	Facile one-step synthesis of Cu1.96S/g-C3N4 OD/2D p-n heterojunctions with enhanced visible light photoactivity toward ciprofloxacin degradation. Materials Letters, 2018, 213, 370-373.	1.3	13

#	Article	IF	CITATIONS
19	Construction of magnetically separable NiAl LDH/Fe ₃ O ₄ –RGO nanocomposites with enhanced photocatalytic performance under visible light. Physical Chemistry Chemical Physics, 2018, 20, 414-421.	1.3	94
20	Development of a Novel Terpolymer as a Green and Efficient Decalcifying Agent for Crude Petroleum. ACS Omega, 2018, 3, 13170-13178.	1.6	1
21	Facile Synthesis of Carbon/gâ€C ₃ N ₄ ÂNanocomposites as Metalâ€Free PhotocatalystÂwith Enhanced Visibleâ€Lightâ€Responsive Photocatalytic Properties. ChemistrySelect, 2018, 3, 12530-12536.	0.7	3
22	Construction of 3D marigold-like Bi2WO6/Ag2O/CQDs heterostructure with superior visible-light active photocatalytic activity toward tetracycline degradation and selective oxidation. Journal of Materials Science, 2018, 53, 12040-12055.	1.7	12
23	Ultrafine cobalt nanoparticles supported on reduced graphene oxide: Efficient catalyst for fast reduction of hexavalent chromium at room temperature. Applied Surface Science, 2017, 402, 294-300.	3.1	56
24	Nanocasting synthesis of an ordered mesoporous CeO ₂ -supported Pt nanocatalyst with enhanced catalytic performance for the reduction of 4-nitrophenol. RSC Advances, 2016, 6, 730-739.	1.7	31
25	Synthesis of Ag/ZnO/C plasmonic photocatalyst with enhanced adsorption capacity and photocatalytic activity to antibiotics. RSC Advances, 2015, 5, 18832-18840.	1.7	50
26	Facile fabrication of a mpg-C $<$ sub $>3sub>N<sub>4sub>/TiO<sub>2sub> heterojunction photocatalyst with enhanced visible light photoactivity toward organic pollutant degradation. RSC Advances, 2015, 5, 64976-64982.$	1.7	32
27	Fabrication of porous g-C ₃ N ₄ /Ag/Fe ₂ O ₃ composites with enhanced visible light photocatalysis performance. RSC Advances, 2015, 5, 58738-58745.	1.7	66
28	Facile Photochemical Synthesis of Au/Pt/g-C ₃ N ₄ with Plasmon-Enhanced Photocatalytic Activity for Antibiotic Degradation. ACS Applied Materials & Degradation. ACS Applied Mate	4.0	589
29	Facile synthesis of ZnO–C nanocomposites with enhanced photocatalytic activity. New Journal of Chemistry, 2015, 39, 1852-1857.	1.4	34
30	Enhanced visible-light photocatalytic activity of Ag ₂ O/g-C ₃ N ₄ pâ€"n heterojunctions synthesized via a photochemical route for degradation of tetracycline hydrochloride. RSC Advances, 2015, 5, 40000-40006.	1.7	37
31	Au-loaded porous graphitic C ₃ N ₄ /graphene layered composite as a ternary plasmonic photocatalyst and its visible-light photocatalytic performance. RSC Advances, 2015, 5, 88249-88257.	1.7	67
32	Facile synthesis of Ag ₂ O/N-doped helical carbon nanotubes with enhanced visible-light photocatalytic activity. RSC Advances, 2015, 5, 3122-3129.	1.7	13
33	A facile route for the preparation of ZnO/C composites with high photocatalytic activity and adsorption capacity. CrystEngComm, 2014, 16, 4478-4484.	1.3	48
34	Photochemical synthesis of ZnO/Ag ₂ O heterostructures with enhanced ultraviolet and visible photocatalytic activity. Journal of Materials Chemistry A, 2014, 2, 7272-7280.	5.2	174