Xukun Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5422915/publications.pdf

Version: 2024-02-01

		1307594	1199594	
15	148	7	12	
papers	citations	h-index	g-index	
15	15	15	60	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Design, Construction, and Testing of an 80-kJ and 2.4-MJ/m ³ Inductive Pulsed Power Module for Electromagnetic Launchers. IEEE Transactions on Plasma Science, 2020, 48, 285-290.	1.3	8
2	A Closed-Loop Velocity Control System for Electromagnetic Railguns. IEEE Transactions on Plasma Science, 2019, 47, 2269-2274.	1.3	4
3	A New Pulse-Compression Circuit With Residual Energy Recovered. , 2018, , .		2
4	Armature Velocity Control Strategy and System Efficiency Optimization of Railguns. IEEE Transactions on Plasma Science, 2018, 46, 3634-3639.	1.3	5
5	Analysis of the Capacitor-Aided Meat Grinder Circuits for an Inductive Pulsed Power Supply. IEEE Transactions on Plasma Science, 2017, 45, 1339-1346.	1.3	18
6	Discussion on Minimum Precharged Voltage and Energy of the Counter-Current Capacitor in ICCOS. IEEE Transactions on Plasma Science, 2017, 45, 1347-1352.	1.3	5
7	Inductance Calculation and Energy Density Optimization of the Tightly Coupled Inductors Used in Inductive Pulsed Power Supplies. IEEE Transactions on Plasma Science, 2017, 45, 1026-1031.	1.3	13
8	Parameter Analysis of the Energy Transfer Capacitor in the Meat Grinder With SECT Circuit. IEEE Transactions on Plasma Science, 2017, 45, 1239-1244.	1.3	6
9	Review of the Meat Grinder Circuits for Railguns. IEEE Transactions on Plasma Science, 2017, 45, 1086-1094.	1.3	27
10	Overview of circuit topologies for inductive pulsed power supplies. CES Transactions on Electrical Machines and Systems, 2017, 1, 265-272.	3.5	11
11	An inductive-capacitive hybrid pulsed power supply for energy recovery. , 2017, , .		0
12	The Meat Grinder With CPFU: A Novel Circuit for Inductive Pulsed Power Supplies. IEEE Transactions on Plasma Science, 2017, 45, 2546-2551.	1.3	9
13	Triggering strategy of railgun power supply for the accurate control of the armature muzzle velocity., 2017,,.		1
14	The Meat Grinder With SECT Circuit. IEEE Transactions on Plasma Science, 2017, 45, 1448-1452.	1.3	19
15	Performance Analysis and Parameter Optimization of CPPS-Based Electromagnetic Railgun System. IEEE Transactions on Plasma Science, 2016, 44, 281-288.	1.3	20