Qingdong Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5422312/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancing the Intermolecular Interactions of Ladder-Type Heteroheptacene-Based Nonfullerene Acceptors for Efficient Polymer Solar Cells by Incorporating Asymmetric Side Chains. CCS Chemistry, 2023, 5, 455-468.	7.8	9
2	Boosting the photovoltaic performance of ladder-type heteroheptacene-based nonfullerene acceptors by incorporating auxochromic groups in the electron-rich core. Chemical Engineering Journal, 2022, 427, 131022.	12.7	7
3	Absorption Spectrumâ€Compensating Configuration Reduces the Energy Loss of Nonfullerene Organic Solar Cells. Advanced Functional Materials, 2022, 32, 2109735.	14.9	7
4	High-performance heptacyclic ladder-type heteroarene-based electron acceptors enabled by bulky neighboring side-chains and end-group fluorination. Chemical Engineering Journal, 2022, 432, 134393.	12.7	8
5	Improving the efficiency and stability of binary small-molecule organic solar cells by incorporating a small amount of polymer acceptor. Journal of Materials Chemistry A, 2022, 10, 10400-10407.	10.3	4
6	M‣eries Nonfullerene Acceptors with Varied Fluorinated End Groups: Crystal Structure, Intermolecular Interaction, Charge Transport, and Photovoltaic Performance. Solar Rrl, 2022, 6, .	5.8	7
7	Furfurylammonium as a Spacer for Efficient 2D Ruddlesden–Popper Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	8
8	A Dual Post-Treatment Method for Improving the Performance of Ternary NiMgO Semiconductor Interfacial Layers and Their Organic Solar Cells [※] . Acta Chimica Sinica, 2022, 80, 581.	1.4	2
9	Rationally Tuning Blend Miscibility of Polymer Donor and Nonfullerene Acceptor for Constructing Efficient Organic Solar Cells [※] . Acta Chimica Sinica, 2022, 80, 724.	1.4	0
10	Emerging Perovskite Materials with Different Nanostructures for Photodetectors. Advanced Optical Materials, 2021, 9, 2001637.	7.3	40
11	KF-Doped SnO ₂ as an electron transport layer for efficient inorganic CsPbl ₂ Br perovskite solar cells with enhanced open-circuit voltages. Journal of Materials Chemistry C, 2021, 9, 4240-4247.	5.5	28
12	Efficient Organic Solar Cells from Molecular Orientation Control of M-Series Acceptors. Joule, 2021, 5, 197-209.	24.0	164
13	Enhancing the Photovoltaic Performance of Ladderâ€Type Heteroheptaceneâ€based Nonfullerene Acceptors by Incorporating Halogen Atoms on Their Ending Groups. Advanced Functional Materials, 2021, 31, 2010436.	14.9	26
14	Ladder-type heteroacene-based dopant-free hole-transporting materials for efficient and stable CsPbl2Br perovskite solar cells. Dyes and Pigments, 2021, 191, 109368.	3.7	8
15	Highâ€Performance Ladderâ€Type Heteroheptaceneâ€Based Nonfullerene Acceptors Enabled by Asymmetric Cores with Enhanced Noncovalent Intramolecular Interactions. Angewandte Chemie, 2021, 133, 19463-19472.	2.0	9
16	Highâ€Performance Ladderâ€Type Heteroheptaceneâ€Based Nonfullerene Acceptors Enabled by Asymmetric Cores with Enhanced Noncovalent Intramolecular Interactions. Angewandte Chemie - International Edition, 2021, 60, 19314-19323.	13.8	54
17	Molecular orientation, anisotropic electron transport and photovoltaic properties of ladder-type heteroheptacene-based semiconductors. Chemical Engineering Journal, 2021, 418, 129497.	12.7	14
18	Regioregular Narrowâ€Bandgap nâ€Type Polymers with High Electron Mobility Enabling Highly Efficient Allâ€Polymer Solar Cells. Advanced Materials, 2021, 33, e2102635.	21.0	151

#	Article	IF	CITATIONS
19	Hotâ€Casting Boosts Efficiency of Halogenâ€Free Solvent Processed Nonâ€Fullerene Organic Solar Cells. Advanced Functional Materials, 2021, 31, 2105794.	14.9	17
20	PEDOT:PSSâ€Free Polymer Nonâ€Fullerene Polymer Solar Cells with Efficiency up to 18.60% Employing a Binaryâ€Solventâ€Chlorinated ITO Anode. Advanced Functional Materials, 2021, 31, 2106846.	14.9	40
21	Different Morphology Dependence for Efficient Indoor Organic Photovoltaics: The Role of the Leakage Current and Recombination Losses. ACS Applied Materials & Interfaces, 2021, 13, 44604-44614.	8.0	13
22	Enhancing the efficiency and stability of two-dimensional Dion–Jacobson perovskite solar cells using a fluorinated diammonium spacer. Journal of Materials Chemistry A, 2021, 9, 11778-11786.	10.3	27
23	Over 17% Efficiency of Ternary Organic Photovoltaics Employing Two Acceptors with an Acceptor–Donor–Acceptor Configuration. ACS Applied Materials & Interfaces, 2021, 13, 57684-57692.	8.0	47
24	A minimal benzo[<i>c</i>][1,2,5]thiadiazole-based electron acceptor as a third component material for ternary polymer solar cells with efficiencies exceeding 16.0%. Materials Horizons, 2020, 7, 117-124.	12.2	85
25	Broadband organic photodetectors based on ternary blend active layers with enhanced and spectrally flat response. Journal of Materials Chemistry C, 2020, 8, 14049-14055.	5.5	31
26	Enhancing the photovoltaic performance of heteroheptacene-based nonfullerene acceptors through the synergistic effect of side-chain engineering and fluorination. Journal of Materials Chemistry A, 2020, 8, 24543-24552.	10.3	19
27	Improving the charge transport of the ternary blend active layer for efficient semitransparent organic solar cells. Energy and Environmental Science, 2020, 13, 5177-5185.	30.8	75
28	Surface Passivation of Allâ€Inorganic CsPbl ₂ Br with a Fluorinated Organic Ammonium Salt for Perovskite Solar Cells with Efficiencies over 16%. Solar Rrl, 2020, 4, 2000321.	5.8	61
29	Ladderâ€Type Heteroheptacenes with Different Heterocycles for Nonfullerene Acceptors. Angewandte Chemie - International Edition, 2020, 59, 21627-21633.	13.8	108
30	Celebrating 60 years of the Fujian Institute of Research on the Structure of Matter. Nanoscale, 2020, 12, 21969-21970.	5.6	0
31	Ladderâ€Type Heteroheptacenes with Different Heterocycles for Nonfullerene Acceptors. Angewandte Chemie, 2020, 132, 21811-21817.	2.0	14
32	Control over ï€-ï€ stacking of heteroheptacene-based nonfullerene acceptors for 16% efficiency polymer solar cells. National Science Review, 2020, 7, 1886-1895.	9.5	84
33	Sandwich structured dielectrics for air-stable and flexible low-voltage organic transistors in ultrasensitive pressure sensing. Materials Chemistry Frontiers, 2020, 4, 1459-1470.	5.9	21
34	A facile surface passivation method for efficient inorganic CsPbl2Br perovskite solar cells with efficiencies over 15%. Science China Materials, 2020, 63, 719-727.	6.3	26
35	Asymmetric indenothienothiophene-based unfused core for A-D-A type nonfullerene acceptors. Dyes and Pigments, 2020, 180, 108495.	3.7	3
36	Enhancing the Photovoltaic Performance of Ladder-Type Dithienocyclopentacarbazole-Based Nonfullerene Acceptors through Fluorination and Side-Chain Engineering. Chemistry of Materials, 2019, 31, 5953-5963.	6.7	43

#	Article	IF	CITATIONS
37	Poly(vinylpyrrolidone)-doped SnO ₂ as an electron transport layer for perovskite solar cells with improved performance. Journal of Materials Chemistry C, 2019, 7, 12204-12210.	5.5	28
38	Enhancing the performance of photomultiplication-type organic photodetectors using solution-processed ZnO as an interfacial layer. Journal of Materials Chemistry C, 2019, 7, 1544-1550.	5.5	36
39	Ladder-type dithienocyclopentadibenzothiophene-cored wide-bandgap polymers for efficient non-fullerene solar cells with large open-circuit voltages. Journal of Materials Chemistry A, 2019, 7, 3307-3316.	10.3	9
40	Defect passivation of CsPbI2Br perovskites through Zn(II) doping: toward efficient and stable solar cells. Science China Chemistry, 2019, 62, 1044-1050.	8.2	55
41	Asymmetric indenothiophene-based nonfullerene acceptors for binary- and ternary-blend polymer solar cells. Dyes and Pigments, 2019, 170, 107555.	3.7	9
42	Dithienocyclopentadibenzothiophene: a <i>C</i> _{2v} -symmetric core for nonfullerene acceptors with tunable bandgaps. Journal of Materials Chemistry A, 2019, 7, 9609-9617.	10.3	11
43	Real-time monitoring of intracellular nitric oxide using a long-wavelength-emitting probe <i>via</i> one-photon or two-photon excitation. Journal of Materials Chemistry C, 2019, 7, 3246-3252.	5.5	19
44	Polyelectrolyte Dielectrics for Flexible Lowâ€Voltage Organic Thinâ€Film Transistors in Highly Sensitive Pressure Sensing. Advanced Functional Materials, 2019, 29, 1806092.	14.9	71
45	Micropatterned elastic ionic polyacrylamide hydrogel for low-voltage capacitive and organic thin-film transistor pressure sensors. Nano Energy, 2019, 58, 96-104.	16.0	123
46	Ladder-type heteroheptacene-cored semiconductors for small-molecule solar cells. Dyes and Pigments, 2018, 149, 747-754.	3.7	7
47	Binary polymer composite dielectrics for flexible low-voltage organic field-effect transistors. Organic Electronics, 2018, 53, 205-212.	2.6	35
48	Cyclopentadithiophene-cored non-fullerene acceptors for efficient polymer solar cells with superior stability. Solar Energy, 2018, 174, 991-998.	6.1	11
49	Dithienonaphthalene-Based Non-fullerene Acceptors With Different Bandgaps for Organic Solar Cells. Frontiers in Chemistry, 2018, 6, 427.	3.6	6
50	Defect Passivation of CsPbIBr ₂ Perovskites for High-Performance Solar Cells with Large Open-Circuit Voltage of 1.28 V. ACS Applied Energy Materials, 2018, 1, 5872-5878.	5.1	62
51	Modulation of bulk heterojunction morphology through small π-bridge changes for polymer solar cells with enhanced performance. Journal of Materials Chemistry C, 2018, 6, 5999-6007.	5.5	8
52	Solutionâ€Processed Bilayer Dielectrics for Flexible Lowâ€Voltage Organic Fieldâ€Effect Transistors in Pressure‧ensing Applications. Advanced Science, 2018, 5, 1701041.	11.2	66
53	Wearable Sensors: Micropatterned Elastic Gold-Nanowire/Polyacrylamide Composite Hydrogels for Wearable Pressure Sensors (Adv. Mater. Technol. 7/2018). Advanced Materials Technologies, 2018, 3, 1870029.	5.8	5
54	Micropatterned Elastic Goldâ€Nanowire/Polyacrylamide Composite Hydrogels for Wearable Pressure Sensors. Advanced Materials Technologies, 2018, 3, 1800051.	5.8	59

#	Article	IF	CITATIONS
55	Long lifetime stable and efficient semitransparent organic solar cells using a ZnMgO-modified cathode combined with a thin MoO ₃ /Ag anode. Journal of Materials Chemistry A, 2017, 5, 3888-3899.	10.3	38
56	Peripherally diketopyrrolopyrrole-functionalized dendritic oligothiophenes – synthesis, molecular structure, properties and applications. Polymer Chemistry, 2017, 8, 1460-1476.	3.9	9
57	Indacenodithiophene-based wide bandgap copolymers for high performance single-junction and tandem polymer solar cells. Nano Energy, 2017, 33, 313-324.	16.0	52
58	Low-Temperature Solution-Processed Zinc Tin Oxide Film as a Cathode Interlayer for Organic Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 6186-6193.	8.0	40
59	Epitaxial Growth of MOF Thin Film for Modifying the Dielectric Layer in Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2017, 9, 7259-7264.	8.0	56
60	Heteroheptacene-cored semiconducting molecules for non-fullerene organic solar cells. Dyes and Pigments, 2017, 144, 133-141.	3.7	21
61	High performance thermal-treatment-free tandem polymer solar cells with high fill factors. Organic Electronics, 2017, 47, 79-84.	2.6	14
62	A ternary conjugated D–A copolymer yields over 9.0% efficiency in organic solar cells. Journal of Materials Chemistry A, 2017, 5, 12015-12021.	10.3	10
63	Indenothiophene-based asymmetric small molecules for organic solar cells. RSC Advances, 2017, 7, 18144-18150.	3.6	7
64	Recent advances in wide bandgap semiconducting polymers for polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 1860-1872.	10.3	92
65	Angular-Shaped Dithienonaphthalene-Based Nonfullerene Acceptor for High-Performance Polymer Solar Cells with Large Open-Circuit Voltages and Minimal Energy Losses. Chemistry of Materials, 2017, 29, 9775-9785.	6.7	59
66	Ladder-Type Dithienonaphthalene-Based Small-Molecule Acceptors for Efficient Nonfullerene Organic Solar Cells. Chemistry of Materials, 2017, 29, 7942-7952.	6.7	105
67	Asymmetric indenothiophene-based non-fullerene acceptors for efficient polymer solar cells. Science China Materials, 2017, 60, 707-716.	6.3	13
68	Push–Pull Type Non-Fullerene Acceptors for Polymer Solar Cells: Effect of the Donor Core. ACS Applied Materials & Interfaces, 2017, 9, 24771-24777.	8.0	42
69	Controllable ZnMgO Electronâ€Transporting Layers for Longâ€Term Stable Organic Solar Cells with 8.06% Efficiency after Oneâ€Year Storage. Advanced Energy Materials, 2016, 6, 1501493.	19.5	72
70	Asymmetricâ€Indenothiopheneâ€Based Copolymers for Bulk Heterojunction Solar Cells with 9.14% Efficiency. Advanced Materials, 2016, 28, 3359-3365.	21.0	97
71	Organic Solar Cells: Controllable ZnMgO Electron-Transporting Layers for Long-Term Stable Organic Solar Cells with 8.06% Efficiency after One-Year Storage (Adv. Energy Mater. 4/2016). Advanced Energy Materials, 2016, 6, n/a-n/a.	19.5	0
72	Solution-processed MoS _x thin-films as hole-transport layers for efficient polymer solar cells. RSC Advances, 2016, 6, 39137-39143.	3.6	8

#	Article	IF	CITATIONS
73	Indenothiopheneâ€Based Wide Bandgap Copolymer for Polymer Fullerene Solar Cells with 9.01% Efficiency and 1.0 V Open Circuit Voltage. Advanced Electronic Materials, 2016, 2, 1600340.	5.1	28
74	Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives. Advanced Science, 2016, 3, 1500362.	11.2	389
75	Side-chain engineering of diindenocarbazole-based large bandgap copolymers toward high performance polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 6160-6168.	5.5	14
76	BODIPY-doped silica nanoparticles with reduced dye leakage and enhanced singlet oxygen generation. Scientific Reports, 2015, 5, 12602.	3.3	49
77	Liquidâ€Crystalline Mesogens Based on Cyclo[6]aramides: Distinctive Phase Transitions in Response to Macrocyclic Host–Guest Interactions. Angewandte Chemie - International Edition, 2015, 54, 11147-11152.	13.8	58
78	Improved synthesis and photovoltaic performance of donor–acceptor copolymers based on dibenzothiophene-cored ladder-type heptacyclic units. Journal of Materials Chemistry C, 2015, 3, 5631-5641.	5.5	13
79	Heavy atom enhanced generation of singlet oxygen in novel indenofluorene-based two-photon absorbing chromophores for photodynamic therapy. Dyes and Pigments, 2015, 117, 7-15.	3.7	21
80	Shell Structure Control of PPy-Modified CuO Composite Nanoleaves for Lithium Batteries with Improved Cyclic Performance. ACS Sustainable Chemistry and Engineering, 2015, 3, 507-517.	6.7	54
81	An anode buffer layer with size-controlled Ag nanoparticles for polymer solar cells with improved efficiencies. RSC Advances, 2015, 5, 16153-16161.	3.6	11
82	Controllable and Stepwise Synthesis of Soluble Ladder-Conjugated Bis(Perylene Imide) Fluorenebisimidazole as a Multifunctional Optoelectronic Material. Journal of Organic Chemistry, 2015, 80, 1871-1877.	3.2	10
83	Dialkoxynaphthalene as an electron-rich unit for high-performance polymer solar cells with large open circuit voltages. Polymer, 2015, 67, 258-266.	3.8	3
84	High electron mobility ZnO film for high-performance inverted polymer solar cells. Applied Physics Letters, 2015, 106, .	3.3	15
85	Ladder-type tetra-p-phenylene-based copolymers for efficient polymer solar cells with open-circuit voltages approaching 1.1 V. Journal of Materials Chemistry A, 2015, 3, 21672-21681.	10.3	11
86	Solution-derived poly(ethylene glycol)-TiO x nanocomposite film as a universal cathode buffer layer for enhancing efficiency and stability of polymer solar cells. Nano Research, 2015, 8, 456-468.	10.4	38
87	Dinaphtho-s-indacene-based copolymers for inverted organic solar cells with high open-circuit voltages. Polymer, 2014, 55, 2262-2270.	3.8	5
88	Bandgap Tunable Zn _{1â€<i>x</i>} Mg _{<i>x</i>} O Thin Films as Highly Transparent Cathode Buffer Layers for Highâ€Performance Inverted Polymer Solar Cells. Advanced Energy Materials, 2014, 4, 1301404.	19.5	93
89	Improving the photovoltaic performance of ladder-type dithienonaphthalene-containing copolymers through structural isomerization. Journal of Materials Chemistry A, 2014, 2, 13905-13915.	10.3	22
90	Diindenocarbazole-based large bandgap copolymers for high-performance organic solar cells with large open circuit voltages. Polymer Chemistry, 2014, 5, 6847-6856.	3.9	22

#	Article	IF	CITATIONS
91	A long-wavelength-emitting fluorescent turn-on probe for imaging hydrogen sulfide in living cells. Sensors and Actuators B: Chemical, 2014, 202, 99-104.	7.8	30
92	Inverted Organic Solar Cells (OSCs). , 2014, , 215-242.		2
93	High performance n-channel thin-film field-effect transistors based on angular-shaped naphthalene tetracarboxylic diimides. Organic Electronics, 2013, 14, 2859-2865.	2.6	9
94	Interface Control of Semiconducting Metal Oxide Layers for Efficient and Stable Inverted Polymer Solar Cells with Open-Circuit Voltages over 1.0 Volt. ACS Applied Materials & Interfaces, 2013, 5, 9015-9025.	8.0	64
95	Two-photon absorption and optical power limiting properties of ladder-type tetraphenylene cored chromophores with different terminal groups. Journal of Materials Chemistry C, 2013, 1, 1771.	5.5	63
96	Ladderâ€ŧype Diindenopyrazine Based Conjugated Copolymers for Organic Solar Cells with High Open•ircuit Voltages. Chinese Journal of Chemistry, 2013, 31, 1409-1417.	4.9	7
97	Indenofluorene based water soluble conjugated oligomers for Hg2+ detection. Sensors and Actuators B: Chemical, 2013, 176, 132-140.	7.8	8
98	Star-shaped chromophores based on a benzodithiophene fused truxene core for solution processed organic solar cells. Dyes and Pigments, 2013, 99, 366-373.	3.7	22
99	Frequency-upconverted stimulated emission by simultaneous five-photon absorption. Nature Photonics, 2013, 7, 234-239.	31.4	134
100	Tuning the frontier molecular orbital energy levels of <i>n</i> â€ŧype conjugated copolymers by using angularâ€shaped naphthalene tetracarboxylic diimides, and their use in allâ€polymer solar cells with high open ircuit voltages. Journal of Polymer Science Part A, 2013, 51, 1999-2005.	2.3	23
101	Low Band Gap Polymers Incorporating a Dicarboxylic Imide-Derived Acceptor Moiety for Efficient Polymer Solar Cells. ACS Macro Letters, 2013, 2, 605-608.	4.8	51
102	Controlling the Structures and Photonic Properties of Organic Nanomaterials by Molecular Design. Angewandte Chemie - International Edition, 2013, 52, 8713-8717.	13.8	180
103	Ladder-Type Dithienonaphthalene-Based Donor–Acceptor Copolymers for Organic Solar Cells. Macromolecules, 2013, 46, 4813-4821.	4.8	40
104	Angular-shaped naphthalene tetracarboxylic diimides for n-channel organic transistor semiconductors. Chemical Communications, 2012, 48, 1254-1256.	4.1	34
105	Novel ladder-type heteroheptacene-based copolymers for bulk heterojunction solar cells. Journal of Materials Chemistry, 2012, 22, 16032.	6.7	19
106	Silylated BODIPY dyes and their use in dye-encapsulated silica nanoparticles with switchable emitting wavelengths for cellular imaging. Analyst, The, 2012, 137, 4140.	3.5	39
107	Controlled Synthesis and Energy Applications of Oneâ€Dimensional Conducting Polymer Nanostructures: An Overview. Advanced Energy Materials, 2012, 2, 179-218.	19.5	329
108	CuO/polypyrrole core–shell nanocomposites as anode materials for lithium-ion batteries. Electrochemistry Communications, 2012, 20, 40-43.	4.7	115

#	Article	IF	CITATIONS
109	Highly Soluble Heteroheptacene: A New Building Block for p-Type Semiconducting Polymers. Organic Letters, 2011, 13, 324-327.	4.6	27
110	A minimal core based fluorophore for selective detection of Zn(II) ions in aqueous solution and living cells. Talanta, 2011, 85, 824-828.	5.5	7
111	Applications of ZnO in organic and hybrid solar cells. Energy and Environmental Science, 2011, 4, 3861.	30.8	478
112	Silica-Based Nanoparticle Uptake and Cellular Response by Primary Microglia. Environmental Health Perspectives, 2010, 118, 589-595.	6.0	115
113	Ladder-Type Oligo- <i>p</i> -phenylene-Containing Copolymers with High Open-Circuit Voltages and Ambient Photovoltaic Activity. Journal of the American Chemical Society, 2010, 132, 5394-5404.	13.7	216
114	High photovoltaic performance of ladder-type oligo-p-phenylene containing copolymers with high open-circuit voltages. , 2009, , .		0
115	A novel near IR two-photon absorbing chromophore: Optical limiting and stabilization performances at an optical communication wavelength. Chemical Physics Letters, 2009, 475, 250-255.	2.6	99
116	Rayleigh, Mie, and Tyndall scatterings of polystyrene microspheres in water: Wavelength, size, and angle dependences. Journal of Applied Physics, 2009, 105, .	2.5	63
117	Multifocus Structures of Ultrashort Self-Focusing Laser Beam Observed in a Three-Photon Fluorescent Medium. IEEE Journal of Quantum Electronics, 2009, 45, 816-824.	1.9	5
118	Conformationally Restricted Dipyrromethene Boron Difluoride (BODIPY) Dyes: Highly Fluorescent, Multicolored Probes for Cellular Imaging. Chemistry - A European Journal, 2008, 14, 5812-5819.	3.3	191
119	Synthesis, Characterization, Twoâ€Photon Absorption, and Optical Limiting Properties of Ladderâ€Type Oligoâ€ <i>p</i> â€phenyleneâ€Cored Chromophores. Advanced Functional Materials, 2008, 18, 2770-2779.	14.9	107
120	Two- and Three-Photon Absorption and Frequency Upconverted Emission of Silicon Quantum Dots. Nano Letters, 2008, 8, 2688-2692.	9.1	92
121	Stimulated Rayleigh–Bragg Scattering From a Two-Photon Absorbing CdSe–CdS–ZnS Quantum-Rods System: Optical Power Limiting and Phase-Conjugation. IEEE Journal of Quantum Electronics, 2008, 44, 894-901.	1.9	2
122	Pyromellitic Diimides: Minimal Cores for High Mobility n-Channel Transistor Semiconductors. Journal of the American Chemical Society, 2008, 130, 14410-14411.	13.7	120
123	Multiphoton Absorbing Materials:  Molecular Designs, Characterizations, and Applications. Chemical Reviews, 2008, 108, 1245-1330.	47.7	1,906
124	Water-Soluble Two-Photon Absorbing Nitrosyl Complex for Light-Activated Therapy through Nitric Oxide Release. Molecular Pharmaceutics, 2008, 5, 389-398.	4.6	59
125	Novel fluorophore based on a multi-substituted olefin skeleton with enhanced three-photon absorption in the femtosecond regime. Chemical Communications, 2008, , 389-391.	4.1	27
126	Dynamic properties and optical phase conjugation of two-photon pumped ultrashort blue stimulated emission in a chromophore solution. Physical Review A, 2008, 77, .	2.5	10

#	Article	IF	CITATIONS
127	OPTICAL PHASE-CONJUGATION PROPERTY OF THREE-PHOTON EXCITED BACKWARD STIMULATED EMISSION. Journal of Nonlinear Optical Physics and Materials, 2007, 16, 137-155.	1.8	1
128	Saturation of multiphoton absorption upon strong and ultrafast infrared laser excitation. Journal of Applied Physics, 2007, 101, 083108.	2.5	37
129	Stimulated Rayleigh-Bragg scattering in a three-photon absorbing medium and its phase-conjugation property. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 1166.	2.1	7
130	Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range. Optics Express, 2007, 15, 12818.	3.4	156
131	Two-Photon Excitation of Fluorogenic Probes for Redox Metabolism:  Dramatic Enhancement of Optical Contrast Ratio by Two-Photon Excitationâ€. Journal of Physical Chemistry C, 2007, 111, 8872-8877.	3.1	16
132	Water-Dispersible Polymeric Structure Co-encapsulating a Novel Hexa- <i>peri</i> -hexabenzocoronene Core Containing Chromophore with Enhanced Two-Photon Absorption and Magnetic Nanoparticles for Magnetically Guided Two-Photon Cellular Imaging. Journal of Physical Chemistry C, 2007, 111, 16846-16851.	3.1	33
133	Two-photon absorption based optical limiting and stabilization by using a CdTe quantum dot solution excited at optical communication wavelength of â°¼1300nm. Applied Physics Letters, 2007, 90, 181108.	3.3	37
134	Degenerate two-/three-photon absorption and optical power-limiting properties in femtosecond regime of a multi-branched chromophore. Journal of Materials Chemistry, 2006, 16, 2490.	6.7	101
135	Asymmetric properties between the forward and backward stimulated emission generated by ultrafast three- and four-photon excitation. Physical Review A, 2006, 73, .	2.5	14
136	Large Cross-Section Enhancement and Intramolecular Energy Transfer upon Multiphoton Absorption of Hindered Diphenylaminofluorene-C60Dyads and Triads. Chemistry of Materials, 2006, 18, 4065-4074.	6.7	48
137	Experimental and Quantum Chemical Studies of Cooperative Enhancement of Three-Photon Absorption, Optical Limiting, and Stabilization Behaviors in Multibranched and Dendritic Structures. Journal of Physical Chemistry B, 2006, 110, 14604-14610.	2.6	23
138	Infrared two-photon-excited visible lasing from a DNA-surfactant-chromophore complex. Optics Letters, 2006, 31, 359.	3.3	46
139	Aggregation-Enhanced Fluorescence and Two-Photon Absorption in Nanoaggregates of a 9,10-Bis[4′-(4″-aminostyryl)styryl]anthracene Derivative. Advanced Functional Materials, 2006, 16, 2317-2323.	14.9	258
140	Dynamics of cavityless lasing generated by ultrafast multiphoton excitation. Physical Review A, 2006, 74, .	2.5	14
141	Stimulated Rayleigh-Bragg scattering in two-photon absorbing media. Physical Review A, 2005, 71, .	2.5	21
142	DNA-based materials for electro-optic applications: current status. , 2005, 5934, 38.		13
143	Two- and three-photon absorption based optical limiting and stabilization using a liquid dye. IEEE Journal of Quantum Electronics, 2005, 41, 1037-1043.	1.9	23
144	Synthesis, two- and three-photon absorption, and optical limiting properties of fluorene-containing ferrocene derivatives. Journal of Materials Chemistry, 2005, 15, 3488.	6.7	56

#	Article	IF	CITATIONS
145	Ï€-Conjugated Dendritic Nanosized Chromophore with Enhanced Two-Photon Absorption. Chemistry of Materials, 2005, 17, 6004-6011.	6.7	110
146	Nonlinear optical stabilization of 1064-nm laser pulses with a two-photon absorbing liquid-dye salt system. Applied Optics, 2005, 44, 3560.	2.1	5
147	Two-, three-, and four-photon-pumped stimulated cavityless lasing properties of ten stilbazolium-dyes solutions. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 2219.	2.1	40
148	Novel two-photon-absorbing, 1,10-phenanthroline-containing π-conjugated chromophores and their nickel(ii) chelated complexes with quenched emissions. Journal of Materials Chemistry, 2005, 15, 579-587.	6.7	64
149	Infrared Emitting Dye and/or Two Photon Excitable Fluorescent Dye Encapsulated in Biodegradable Polymer Nanoparticles for Bioimaging. Materials Research Society Symposia Proceedings, 2004, 845, 315.	0.1	2
150	One-, two-, and three-photon pumped lasing in a novel liquid dye salt system. IEEE Journal of Quantum Electronics, 2003, 39, 1003-1008.	1.9	27
151	Synthesis and properties of substituted (p-aminostyryl)-1-(3-sulfooxypropyl)pyridinium inner salts as a new class of two-photon pumped lasing dyesElectronic supplementary information (ESI) available: synthesis details for compounds 7b, 7c, 8b and 8c. See http://www.rsc.org/suppdata/jm/b3/b307504d/. Journal of Materials Chemistry, 2003, 13, 2499.	6.7	71
152	Synthesis of C60-diphenylaminofluorene dyad with large 2PA cross-sections and efficient intramolecular two-photon energy transfer. Chemical Communications, 2002, , 1854-1855.	4.1	48
153	Synthesis and Nonlinear Optical Properties ofp-(Dimethylamino)benzylidene Dyes Containing Different Acceptors. Chemistry Letters, 2000, 29, 1426-1427.	1.3	7
154	Scanning tunneling microscope investigation of the currentvoltage characteristics of a newly engineered Π-electron molecule. , 0, , .		0