
Pratheek Shanthraj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5422294/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel method for radial hydride analysis in zirconium alloys: HAPPy. Journal of Nuclear Materials, 2022, 559, 153442.	1.3	3
2	CALPHAD-informed phase-field model for two-sublattice phases based on chemical potentials: <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.svg"><mml:mi>i-</mml:mi></mml:math> -phase precipitation in Al-Zn-Mg-Cu alloys. Acta Materialia, 2022, 226, 117602.	3.8	14
3	Simulating intergranular hydrogen enhanced decohesion in aluminium using density functional theory. Modelling and Simulation in Materials Science and Engineering, 2022, 30, 035009.	0.8	3
4	Microstructural Behavior and Fracture in Crystalline Materials: Overview. , 2022, , 1301-1333.		0
5	Modeling and simulation of microstructure in metallic systems based on multi-physics approaches. Npj Computational Materials, 2022, 8, .	3.5	10
6	Modelling dynamic precipitation in pre-aged aluminium alloys under warm forming conditions. Acta Materialia, 2022, 234, 118036.	3.8	17
7	Multiscale analysis of grain boundary microstructure in high strength 7xxx Al alloys. Acta Materialia, 2021, 202, 190-210.	3.8	47
8	The hidden structure dependence of the chemical life of dislocations. Science Advances, 2021, 7, .	4.7	24
9	Phase-Field Modeling of Chemoelastic Binodal/Spinodal Relations and Solute Segregation to Defects in Binary Alloys. Materials, 2021, 14, 1787.	1.3	10
10	CALPHAD-informed phase-field modeling of grain boundary microchemistry and precipitation in Al-Zn-Mg-Cu alloys. Acta Materialia, 2021, 214, 116966.	3.8	30
11	The evolution of abnormally coarse grain structures in beta-annealed Ti-6Al%-4V% rolled plates, observed by in-situ investigation. Acta Materialia, 2021, 221, 117362.	3.8	3
12	An FFT-based spectral solver for interface decohesion modelling using a gradient damage approach. Computational Mechanics, 2020, 65, 925-939.	2.2	17
13	Solving Material Mechanics and Multiphysics Problems of Metals with Complex Microstructures Using DAMASK—The Düsseldorf Advanced Material Simulation Kit. Advanced Engineering Materials, 2020, 22, 1901044.	1.6	11
14	Unveiling the Re effect in Ni-based single crystal superalloys. Nature Communications, 2020, 11, 389.	5.8	101
15	Multi-component chemo-mechanics based on transport relations for the chemical potential. Computer Methods in Applied Mechanics and Engineering, 2020, 365, 113029.	3.4	12
16	On the interaction of precipitates and tensile twins in magnesium alloys. Acta Materialia, 2019, 178, 146-162.	3.8	80
17	Atomistic phase field chemomechanical modeling of dislocation-solute-precipitate interaction in Ni–Al–Co. Acta Materialia, 2019, 175, 250-261.	3.8	51
18	Understanding the mechanisms of electroplasticity from a crystal plasticity perspective. Modelling and Simulation in Materials Science and Engineering, 2019, 27, 085006.	0.8	37

PRATHEEK SHANTHRAJ

#	Article	IF	CITATIONS
19	Spectral Solvers for Crystal Plasticity and Multi-physics Simulations. , 2019, , 1-25.		Ο
20	Brittle to quasi-brittle transition and crack initiation precursors in crystals with structural Inhomogeneities. Materials Theory, 2019, 3, .	2.2	12
21	DAMASK – The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale. Computational Materials Science, 2019, 158, 420-478.	1.4	440
22	Spectral Solvers for Crystal Plasticity and Multi-physics Simulations. , 2019, , 1-26.		2
23	Spectral Solvers for Crystal Plasticity and Multi-physics Simulations. , 2019, , 1347-1372.		7
24	FFT-based interface decohesion modelling by a nonlocal interphase. Advanced Modeling and Simulation in Engineering Sciences, 2018, 5, .	0.7	24
25	An integrated crystal plasticity–phase field model for spatially resolved twin nucleation, propagation, and growth in hexagonal materials. International Journal of Plasticity, 2018, 106, 203-227.	4.1	125
26	Finite-deformation phase-field chemomechanics for multiphase, multicomponent solids. Journal of the Mechanics and Physics of Solids, 2018, 112, 619-636.	2.3	38
27	Particle-induced damage in Fe–TiB2 high stiffness metal matrix composite steels. Materials and Design, 2018, 160, 557-571.	3.3	37
28	Spectral Solvers for Crystal Plasticity and Multi-physics Simulations. , 2018, , 1-27.		5
29	Spectral Solvers for Crystal Plasticity and Multi-physics Simulations. , 2018, , 1-25.		1
30	Numerical Benchmark of Phase-Field Simulations with Elastic Strains: Precipitation in the Presence of Chemo-Mechanical Coupling. Computational Materials Science, 2018, 155, 541-553.	1.4	15
31	Multiscale Modelling of Hydrogen Transport and Segregation in Polycrystalline Steels. Metals, 2018, 8, 430.	1.0	21
32	A Flexible and Efficient Output File Format for Grain-Scale Multiphysics Simulations. Integrating Materials and Manufacturing Innovation, 2017, 6, 83-91.	1.2	5
33	Coupled Crystal Plasticity–Phase Field Fracture Simulation Study on Damage Evolution Around a Void: Pore Shape Versus Crystallographic Orientation. Jom, 2017, 69, 872-878.	0.9	46
34	Crystal plasticity study on stress and strain partitioning in a measured 3D dual phase steel microstructure. Physical Mesomechanics, 2017, 20, 311-323.	1.0	58
35	Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel. Acta Materialia, 2017, 140, 258-273.	3.8	179
36	Subsurface Grain Morphology Reconstruction by Differential Aperture X-ray Microscopy. Jom, 2017, 69, 1100-1105.	0.9	2

PRATHEEK SHANTHRAJ

#	Article	IF	CITATIONS
37	Elasto-viscoplastic phase field modelling of anisotropic cleavage fracture. Journal of the Mechanics and Physics of Solids, 2017, 99, 19-34.	2.3	94
38	A phase field model for damage in elasto-viscoplastic materials. Computer Methods in Applied Mechanics and Engineering, 2016, 312, 167-185.	3.4	79
39	Neighborhood influences on stress and strain partitioning in dual-phase microstructures. Meccanica, 2016, 51, 429-441.	1.2	45
40	Crystal plasticity study of monocrystalline stochastic honeycombs under in-plane compression. Acta Materialia, 2016, 103, 796-808.	3.8	15
41	Linking atomistic, kinetic Monte Carlo and crystal plasticity simulations of singleâ€crystal tungsten strength. GAMM Mitteilungen, 2015, 38, 213-227.	2.7	13
42	Analytical bounds of in-plane Young's modulus and full-field simulations of two-dimensional monocrystalline stochastic honeycomb structures. Computational Materials Science, 2015, 109, 323-329.	1.4	4
43	Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials. International Journal of Plasticity, 2015, 66, 31-45.	4.1	159
44	Microstructural Behavior and Fracture in Crystalline Materials: Overview. , 2015, , 419-452.		0
45	Integrated experimental–simulation analysis of stress and strain partitioning in multiphase alloys. Acta Materialia, 2014, 81, 386-400.	3.8	285
46	Modeling the heterogeneous effects of retained austenite on the behavior of martensitic high strength steels. International Journal of Fracture, 2013, 184, 241-252.	1.1	10
47	The effects of microstructure and morphology on fracture nucleation and propagation in martensitic steel alloys. Mechanics of Materials, 2013, 58, 110-122.	1.7	10
48	Microstructurally induced fracture nucleation and propagation in martensitic steels. Journal of the Mechanics and Physics of Solids, 2013, 61, 1091-1105.	2.3	42
49	Optimal microstructures for martensitic steels. Journal of Materials Research, 2012, 27, 1598-1611.	1.2	13
50	Dislocation-density mechanisms for void interactions in crystalline materials. International Journal of Plasticity, 2012, 34, 154-163.	4.1	57
51	Electrothermomechanical Finite-Element Modeling of Metal Microcontacts in MEMS. Journal of Microelectromechanical Systems, 2011, 20, 371-382.	1.7	15
52	Dislocation density evolution and interactions in crystalline materials. Acta Materialia, 2011, 59, 7695-7702.	3.8	100
53	Microstructural Modeling of Failure Modes in Martensitic Steel Alloys. Materials Research Society Symposia Proceedings, 2011, 1296, 1.	0.1	8