Ahmed Salama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5421745/publications.pdf Version: 2024-02-01

ALIMED SALAMA

#	Article	IF	CITATIONS
1	Carboxymethyl cellulose-g-poly(2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal. International Journal of Biological Macromolecules, 2015, 73, 72-75.	3.6	128
2	Cellulose/calcium phosphate hybrids: New materials for biomedical and environmental applications. International Journal of Biological Macromolecules, 2019, 127, 606-617.	3.6	88
3	New sustainable hybrid material as adsorbent for dye removal from aqueous solutions. Journal of Colloid and Interface Science, 2017, 487, 348-353.	5.0	84
4	Synthesis and antimicrobial properties of new chitosan derivatives containing guanidinium groups. Carbohydrate Polymers, 2020, 241, 116363.	5.1	80
5	Preparation of CMC-g-P(SPMA) super adsorbent hydrogels: Exploring their capacity for MB removal from waste water. International Journal of Biological Macromolecules, 2018, 106, 940-946.	3.6	63
6	Nanocellulose-Based Materials for Water Treatment: Adsorption, Photocatalytic Degradation, Disinfection, Antifouling, and Nanofiltration. Nanomaterials, 2021, 11, 3008.	1.9	63
7	Preparation of polyelectrolyte/calcium phosphate hybrids for drug delivery application. Carbohydrate Polymers, 2014, 113, 500-506.	5.1	58
8	Crosslinked alginate/silica/zinc oxide nanocomposite: A sustainable material with antibacterial properties. Composites Communications, 2018, 7, 7-11.	3.3	55
9	New N-guanidinium chitosan/silica ionic microhybrids as efficient adsorbent for dye removal from waste water. International Journal of Biological Macromolecules, 2018, 111, 762-768.	3.6	50
10	Carboxymethyl cellulose based hybrid material for sustained release of protein drugs. International Journal of Biological Macromolecules, 2016, 93, 1647-1652.	3.6	48
11	Recent progress in preparation and applications of chitosan/calcium phosphate composite materials. International Journal of Biological Macromolecules, 2021, 178, 240-252.	3.6	48
12	Ionic liquid-assisted formation of cellulose/calcium phosphate hybrid materials. Beilstein Journal of Nanotechnology, 2014, 5, 1553-1568.	1.5	46
13	Regenerated cellulose/wool blend enhanced biomimetic hydroxyapatite mineralization. International Journal of Biological Macromolecules, 2016, 92, 920-925.	3.6	46
14	Cellulose/silk fibroin assisted calcium phosphate growth: Novel biocomposite for dye adsorption. International Journal of Biological Macromolecules, 2020, 165, 1970-1977.	3.6	42
15	Oxidized cellulose reinforced silica gel: New hybrid for dye adsorption. Materials Letters, 2018, 230, 293-296.	1.3	40
16	Carboxymethyl cellulose prepared from mesquite tree: New source for promising nanocomposite materials. Carbohydrate Polymers, 2018, 189, 138-144.	5.1	39
17	Preparation of sustainable nanocomposite as new adsorbent for dyes removal. Fibers and Polymers, 2017, 18, 1825-1830.	1.1	38
18	Chitosan based hydrogel assisted spongelike calcium phosphate mineralization for in-vitro BSA release. International Journal of Biological Macromolecules, 2018, 108, 471-476.	3.6	38

Ahmed Salama

#	Article	IF	CITATIONS
19	Polysaccharides/silica hybrid materials: New perspectives for sustainable raw materials. Journal of Carbohydrate Chemistry, 2016, 35, 131-149.	0.4	37
20	Synthesis of N-Guanidinium-Chitosan/Silica Hybrid Composites: Efficient Adsorbents for Anionic Pollutants. Journal of Polymers and the Environment, 2018, 26, 1986-1997.	2.4	35
21	Synthesis and characterization of N-guanidinium chitosan/silica ionic hybrids as templates for calcium phosphate mineralization. International Journal of Biological Macromolecules, 2020, 147, 276-283.	3.6	33
22	Bioactive cellulose grafted soy protein isolate towards biomimetic calcium phosphate mineralization. Industrial Crops and Products, 2017, 95, 170-174.	2.5	32
23	Carboxymethyl cellulose-g-poly (acrylic acid)/calcium phosphate composite as a multifunctional hydrogel material. Materials Letters, 2015, 157, 243-247.	1.3	31
24	Carboxymethyl cellulose/silica hybrids as templates for calcium phosphate biomimetic mineralization. International Journal of Biological Macromolecules, 2015, 74, 155-161.	3.6	30
25	Ionic chitosan/silica nanocomposite as efficient adsorbent for organic dyes. International Journal of Biological Macromolecules, 2021, 188, 404-410.	3.6	29
26	Functionalized hybrid materials assisted organic dyes removal from aqueous solutions. Environmental Nanotechnology, Monitoring and Management, 2016, 6, 159-163.	1.7	23
27	Cellulose Amphiphilic Materials: Chemistry, Process and Applications. Pharmaceutics, 2022, 14, 386.	2.0	20
28	Mineralized Polyvinyl Alcohol/Sodium Alginate Hydrogels Incorporating Cellulose Nanofibrils for Bone and Wound Healing. Molecules, 2022, 27, 697.	1.7	14
29	Grafting Study and Antifungal Activity of a Carboxymethyl Cellulose Derivative. International Journal of Polymeric Materials and Polymeric Biomaterials, 2009, 58, 453-467.	1.8	13
30	Amphiphilic Cellulose as Stabilizer for Oil/ Water Emulsion. Egyptian Journal of Chemistry, 2017, 60, 181-204.	0.1	13
31	Calcium phosphate mineralization controlled by carboxymethyl cellulose-g-polymethacrylic acid. Soft Materials, 2016, 14, 154-161.	0.8	12
32	New Sustainable Ionic Polysaccharides Fibers Assist Calcium Phosphate Mineralization as Efficient Adsorbents. Fibers and Polymers, 2021, 22, 1526.	1.1	1