
Pritam Sinharoy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5421454/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering redox sensors into CHO cells enables nearâ€realâ€time quantification of intracellular redox in bioprocesses. Biotechnology and Bioengineering, 2022, , .	1.7	2
2	E-cigarette aerosol exacerbates cardiovascular oxidative stress in mice with an inactive aldehyde dehydrogenase 2 enzyme. Redox Biology, 2022, 54, 102369.	3.9	7
3	Acknowledgment to Reviewers of Toxics in 2020. Toxics, 2021, 9, 17.	1.6	0
4	Redox as a bioprocess parameter: analytical redox quantification in biological therapeutic production. Current Opinion in Biotechnology, 2021, 71, 49-54.	3.3	5
5	Aberrant reactive aldehyde detoxification by aldehyde dehydrogenase-2 influences endometriosis development and pain-associated behaviors. Pain, 2021, 162, 71-83.	2.0	12
6	Perfusion reduces bispecific antibody aggregation via mitigating mitochondrial dysfunction-induced glutathione oxidation and ER stress in CHO cells. Scientific Reports, 2020, 10, 16620.	1.6	17
7	Abstract 491: E-cigarette Aerosol Elevates Cardiovascular Oxidative Stress in Mice With Aldehyde Dehydrogenase 2 Deficiency. Circulation Research, 2020, 127, .	2.0	0
8	Environmental Aldehyde Sources and the Health Implications of Exposure. Advances in Experimental Medicine and Biology, 2019, 1193, 35-52.	0.8	42
9	Stimulation of TRPA1 attenuates ischemia-induced cardiomyocyte cell death through an eNOS-mediated mechanism. Channels, 2019, 13, 192-206.	1.5	9
10	Abstract 299: Engineering Rodent TRPV1 to Mimic Chicken TRPV1 Reduces Capsaicin-induced Calcium Influx in H9C2 Cells. Circulation Research, 2019, 125, .	2.0	0
11	The influence of chronic WIN 55, 212-2 treatment on vaginal hyperalgesia, VEGF, and NGF in a rat model of endometriosis. Journal of Pain, 2018, 19, S78.	0.7	2
12	Modulation of TRPA1 channel activity by Cdk5 in sensory neurons. Channels, 2018, 12, 65-75.	1.5	13
13	Association of Impaired Reactive Aldehyde Metabolism with Delayed Graft Function in Human Kidney Transplantation. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-10.	1.9	2
14	E•igarette vapor elevates heart rate in mice with limited reactive aldehyde metabolism. FASEB Journal, 2018, 32, 848.16.	0.2	0
15	Endometriosisâ€associated vaginal hyperalgesia is mediated by the balance of reactive aldehyde production and metabolism FASEB Journal, 2018, 32, 684.4.	0.2	0
16	TRPA1 ion channel stimulation enhances cardiomyocyte contractile function via a CaMKII-dependent pathway. Channels, 2017, 11, 587-603.	1.5	41
17	TRPA1 and TRPV1 contribute to propofol-mediated antagonism of U46619-induced constriction in murine coronary arteries. PLoS ONE, 2017, 12, e0180106.	1.1	12
18	TRPA1 is functionally co-expressed with TRPV1 in cardiac muscle: Co-localization at z-discs, costameres and intercalated discs. Channels, 2016, 10, 395-409.	1.5	56

PRITAM SINHAROY

#	Article	IF	CITATIONS
19	Modulation of Human Neutrophil Responses by the Essential Oils from <i>Ferula akitschkensis</i> and Their Constituents. Journal of Agricultural and Food Chemistry, 2016, 64, 7156-7170.	2.4	36
20	4-Hydroxynonenal dependent alteration of TRPV1-mediated coronary microvascular signaling. Free Radical Biology and Medicine, 2016, 101, 10-19.	1.3	18
21	Membrane translocation of TRPC6 channels and endothelial migration are regulated by calmodulin and PI3 kinase activation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2110-2115.	3.3	42
22	Propofol restores <scp>TRPV</scp> 1 sensitivity via a <scp>TRPA</scp> 1â€, nitric oxide synthaseâ€dependent activation of <scp>PKC</scp> <i>îµ</i> . Pharmacology Research and Perspectives, 2015, 3, e00153.	1.1	15
23	Propofol Causes Vasodilation In Vivo via TRPA1 Ion Channels: Role of Nitric Oxide and BKCa Channels. PLoS ONE, 2015, 10, e0122189.	1.1	22
24	Propofol and vascular regulation: Role of TRPA1 and TRPV1 ion hannels. FASEB Journal, 2015, 29, LB487.	0.2	0
25	αâ€Synemin localizes to the Mâ€band of the sarcomere through interaction with the M10 region of titin. FEBS Letters, 2014, 588, 4625-4630.	1.3	14