Ming Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5421263/publications.pdf Version: 2024-02-01

MINC YANC

#	Article	IF	CITATIONS
1	Catalytically active Au-O(OH) <i> _x </i> - species stabilized by alkali ions on zeolites and mesoporous oxides. Science, 2014, 346, 1498-1501.	12.6	544
2	Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit. Nature Communications, 2015, 6, 8550.	12.8	484
3	Tackling CO Poisoning with Single-Atom Alloy Catalysts. Journal of the American Chemical Society, 2016, 138, 6396-6399.	13.7	374
4	Atomically Dispersed Au–(OH) _{<i>x</i>} Species Bound on Titania Catalyze the Low-Temperature Water-Gas Shift Reaction. Journal of the American Chemical Society, 2013, 135, 3768-3771.	13.7	348
5	A Common Single-Site Pt(II)–O(OH) _{<i>x</i>} – Species Stabilized by Sodium on "Active―and "Inert―Supports Catalyzes the Water-Gas Shift Reaction. Journal of the American Chemical Society, 2015, 137, 3470-3473.	13.7	347
6	Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms. Nature Communications, 2019, 10, 3808.	12.8	225
7	Pd/Support Interface-Promoted Pdâ^'Ce _{0.7} Zr _{0.3} O ₂ â^'Al ₂ O ₃ Automobile Three-Way Catalysts: Studying the Dynamic Oxygen Storage Capacity and CO, C ₃ H ₈ , and NO Conversion. Journal of Physical Chemistry C. 2009. 113. 3212-3221.	3.1	101
8	Activation of subnanometric Pt on Cu-modified CeO2 via redox-coupled atomic layer deposition for CO oxidation. Nature Communications, 2020, 11, 4240.	12.8	101
9	Single-atom gold oxo-clusters prepared in alkaline solutions catalyse the heterogeneous methanol self-coupling reactions. Nature Chemistry, 2019, 11, 1098-1105.	13.6	82
10	Single gold atoms stabilized on nanoscale metal oxide supports are catalytic active centers for various reactions. AICHE Journal, 2016, 62, 429-439.	3.6	62
11	The role of pore diffusion in determining NH3 SCR active sites over Cu/SAPO-34 catalysts. Journal of Catalysis, 2016, 341, 55-61.	6.2	58
12	Design of single-atom metal catalysts on various supports for the low-temperature water-gas shift reaction. Catalysis Today, 2017, 298, 216-225.	4.4	53
13	ZnO-modified zirconia as gold catalyst support for the low-temperature methanol steam reforming reaction. Applied Catalysis B: Environmental, 2014, 154-155, 142-152.	20.2	51
14	Aftertreatment Protocols for Catalyst Characterization and Performance Evaluation: Low-Temperature Oxidation, Storage, Three-Way, and NH3-SCR Catalyst Test Protocols. Emission Control Science and Technology, 2019, 5, 183-214.	1.5	46
15	Single-site Pt/La-Al2O3 stabilized by barium as an active and stable catalyst in purifying CO and C3H6 emissions. Applied Catalysis B: Environmental, 2019, 244, 327-339.	20.2	44
16	Performance of dynamic oxygen storage capacity, water–gas shift and steam reforming reactions over Pd-only three-way catalysts. Catalysis Today, 2010, 158, 481-489.	4.4	43
17	Pd-Supported Interaction-Defined Selective Redox Activities in Pdâ^'Ce _{0.7} Zr _{0.3} O ₂ â^'Al ₂ O ₃ Model Three-Way Catalysts. Journal of Physical Chemistry C, 2009, 113, 12778-12789.	3.1	34
18	Enhancing oxygen reduction performance of oxide-CNT through in-situ generated nanoalloy bridging. Applied Catalysis B: Environmental, 2020, 263, 118297.	20.2	34

Ming Yang

#	Article	IF	CITATIONS
19	Nanocluster and single-atom catalysts for thermocatalytic conversion of CO and CO ₂ . Catalysis Science and Technology, 2020, 10, 5772-5791.	4.1	32
20	Structure Sensitivity of Oxidative Dehydrogenation of Cyclohexane over FeO _{<i>x</i>} and Au/Fe ₃ O ₄ Nanocrystals. ACS Catalysis, 2013, 3, 529-539.	11.2	28
21	Enhanced thermal stability of palladium oxidation catalysts using phosphate-modified alumina supports. Catalysis Science and Technology, 2017, 7, 5038-5048.	4.1	27
22	Tuning Singleâ€atom Pt ₁ â^'CeO ₂ Catalyst for Efficient CO and C ₃ H ₆ Oxidation: Size Effect of Ceria on Pt Structural Evolution. ChemNanoMat, 2020, 6, 1797-1805.	2.8	27
23	Investigating anomalous growth of platinum particles during accelerated aging of diesel oxidation catalysts. Applied Catalysis B: Environmental, 2020, 266, 118598.	20.2	27
24	Effects of Ni-Doping of Ceria-Based Materials on Their Micro-Structures and Dynamic Oxygen Storage and Release Behaviors. Catalysis Letters, 2010, 140, 38-48.	2.6	23
25	Effects of CO2 and steam on Ba/Ce-based NOx storage reduction catalysts during lean aging. Journal of Catalysis, 2010, 271, 228-238.	6.2	17
26	Modified textures and redox activities in Pt/Al2O3+BaO/CexZr1â^'xO2 model NSR catalysts. Applied Catalysis B: Environmental, 2011, 101, 355-365.	20.2	12
27	Selective electroreduction of CO ₂ to ethanol over a highly stable catalyst derived from polyaniline/CuBi ₂ O ₄ . Catalysis Science and Technology, 2021, 11, 5908-5916.	4.1	10
28	Single Atomic Pt on SrTiO3 Catalyst in Reverse Water Gas Shift Reactions. Catalysts, 2021, 11, 738.	3.5	8
29	Possible negative influences of increasing content of cerium on activity and hydrothermal stability of Rh/ceria-zirconia three-way catalysts. Journal of Rare Earths, 2021, 39, 797-804.	4.8	7
30	Thermally stable γ-alumina developed from the fumigation byproduct of phosphide aluminum. Journal of Alloys and Compounds, 2018, 741, 256-264.	5.5	4
31	Atomically Dispersed Precious Metal Species on Various Oxide Supports for Catalytic Hydrogen Upgrading and Emission Control. Microscopy and Microanalysis, 2016, 22, 858-859.	0.4	Ο