Qiang Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5421047/publications.pdf Version: 2024-02-01

		136740	155451
113	3,486	32	55
papers	citations	h-index	g-index
113	113	113	1914
all docs	docs citations	times ranked	citing authors

OIANC SUN

#	Article	IF	CITATIONS
1	Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment. Applied Thermal Engineering, 2016, 98, 1297-1304.	3.0	269
2	A Study on Crack Damage Stress Thresholds of Different Rock Types Based on Uniaxial Compression Tests. Rock Mechanics and Rock Engineering, 2014, 47, 1183-1195.	2.6	175
3	Surface subsidence control theory and application to backfill coal mining technology. Environmental Earth Sciences, 2015, 74, 1439-1448.	1.3	160
4	Reutilization of gangue wastes in underground backfilling mining: Overburden aquifer protection. Chemosphere, 2021, 264, 128400.	4.2	157
5	Thermal properties of sandstone after treatment at high temperature. International Journal of Rock Mechanics and Minings Sciences, 2016, 85, 60-66.	2.6	149
6	Thermal damage pattern and thresholds of granite. Environmental Earth Sciences, 2015, 74, 2341-2349.	1.3	146
7	Studying the dynamic damage failure of concrete based on acoustic emission. Construction and Building Materials, 2017, 149, 9-16.	3.2	108
8	Temperature effect on microstructure and P-wave propagation in Linyi sandstone. Applied Thermal Engineering, 2017, 115, 913-922.	3.0	98
9	Pore characteristics and mechanical properties of sandstone under the influence of temperature. Applied Thermal Engineering, 2017, 113, 537-543.	3.0	87
10	The effect of high temperature on tensile strength of sandstone. Applied Thermal Engineering, 2017, 111, 573-579.	3.0	86
11	Experimental study on mechanical and porous characteristics of limestone affected by high temperature. Applied Thermal Engineering, 2017, 110, 356-362.	3.0	86
12	Influence of Pore Water (Ice) Content on the Strength and Deformability of Frozen Argillaceous Siltstone. Rock Mechanics and Rock Engineering, 2020, 53, 967-974.	2.6	85
13	Combined effects of salt, cyclic wetting and drying cycles on the physical and mechanical properties of sandstone. Engineering Geology, 2019, 248, 70-79.	2.9	84
14	Experimental research on water inrush in tunnel construction. Natural Hazards, 2016, 81, 467-480.	1.6	79
15	An NMR-based investigation of pore water freezing process in sandstone. Cold Regions Science and Technology, 2019, 168, 102893.	1.6	71
16	Acoustic emission characteristics of gabbro after microwave heating. International Journal of Rock Mechanics and Minings Sciences, 2021, 138, 104616.	2.6	65
17	Changes in the thermodynamic properties of alkaline granite after cyclic quenching following high temperature action. International Journal of Mining Science and Technology, 2021, 31, 843-852.	4.6	58
18	Thermally induced variation of primary wave velocity in granite from Yantai: Experimental and modeling results. International Journal of Thermal Sciences, 2017, 114, 320-326.	2.6	53

#	Article	IF	CITATIONS
19	Experimental study of the effect of high temperature on primary wave velocity and microstructure of limestone. Environmental Earth Sciences, 2015, 74, 5739-5748.	1.3	49
20	Variation of mechanical properties of granite after high-temperature treatment. Arabian Journal of Geosciences, 2018, 11, 1.	0.6	49
21	Effects of high temperature treatment on physical-thermal properties of clay. Thermochimica Acta, 2018, 666, 148-155.	1.2	48
22	Experimental Study on the Thermal Damage Characteristics of Limestone and Underlying Mechanism. Rock Mechanics and Rock Engineering, 2016, 49, 2999-3008.	2.6	45
23	Porosity and wave velocity evolution of granite after high-temperature treatment: a review. Environmental Earth Sciences, 2018, 77, 1.	1.3	45
24	Orbital climate variability on the northeastern Tibetan Plateau across the Eocene–Oligocene transition. Nature Communications, 2020, 11, 5249.	5.8	44
25	Variation of Wave Velocity and Porosity of Sandstone after High Temperature Heating. Acta Geophysica, 2016, 64, 633-648.	1.0	43
26	Effects of high temperature thermal treatment on the physical properties of clay. Environmental Earth Sciences, 2016, 75, 1.	1.3	40
27	Experimental study on response characteristics of micro–macroscopic performance of red sandstone after high-temperature treatment. Journal of Thermal Analysis and Calorimetry, 2019, 136, 1935-1945.	2.0	40
28	Inconsistency of changes in uniaxial compressive strength and P-wave velocity of sandstone after temperature treatments. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13, 143-153.	3.7	40
29	The influence of microwave treatment on the mode I fracture toughness of granite. Engineering Fracture Mechanics, 2021, 249, 107768.	2.0	36
30	The relationship between the deformation mechanism and permeability on brittle rock. Natural Hazards, 2013, 66, 1179-1187.	1.6	35
31	Effect of high temperature on mechanical and acoustic emission properties of calcareous-aggregate concrete. Applied Thermal Engineering, 2016, 106, 1200-1208.	3.0	33
32	Pore, mechanics and acoustic emission characteristics of limestone under the influence of temperature. Applied Thermal Engineering, 2017, 123, 1237-1244.	3.0	32
33	Experimental study on thermophysical properties of clay after high temperature. Applied Thermal Engineering, 2017, 111, 847-854.	3.0	32
34	Global warming-induced Asian hydrological climate transition across the Miocene–Pliocene boundary. Nature Communications, 2021, 12, 6935.	5.8	31
35	Experimental study on color change and compression strength of concrete tunnel lining in a fire. Tunnelling and Underground Space Technology, 2018, 71, 106-114.	3.0	30
36	Fracture Mechanics Behavior of Jointed Granite Exposed to High Temperatures. Rock Mechanics and Rock Engineering, 2021, 54, 2183-2196.	2.6	29

#	Article	IF	CITATIONS
37	Linking the mechanical properties of frozen sandstone to phase composition of pore water measured by LF-NMR at subzero temperatures. Bulletin of Engineering Geology and the Environment, 2021, 80, 4501-4513.	1.6	29
38	Changes in color and thermal properties of fly ash cement mortar after heat treatment. Construction and Building Materials, 2018, 165, 72-81.	3.2	28
39	Effect of high temperature on mode-I fracture toughness of granite subjected to liquid nitrogen cooling. Engineering Fracture Mechanics, 2021, 252, 107834.	2.0	28
40	Analysis of Microbial Community Succession during Methane Production from Baiyinhua Lignite. Energy & Fuels, 2018, 32, 10311-10320.	2.5	27
41	Electrical resistivity variation in uniaxial rock compression. Arabian Journal of Geosciences, 2015, 8, 1869-1880.	0.6	26
42	Temperature dependence of the thermal diffusivity of sandstone. Journal of Petroleum Science and Engineering, 2018, 164, 110-116.	2.1	25
43	Surface properties of grayish-yellow sandstone after thermal shock. Environmental Earth Sciences, 2019, 78, 1.	1.3	23
44	A quantitative criterion to describe the deformation process of rock sample subjected to uniaxial compression: From criticality to final failure. Physica A: Statistical Mechanics and Its Applications, 2014, 410, 470-482.	1.2	21
45	Effects of pre-existing cracks and temperature on failure mode of granite from Eastern China. Journal of Structural Geology, 2019, 126, 330-337.	1.0	20
46	Fractal analysis of pore structure of granite after variable thermal cycles. Environmental Earth Sciences, 2019, 78, 1.	1.3	20
47	The effect of rapid cooling on the thermal diffusivity of granite. Journal of Applied Geophysics, 2019, 168, 71-78.	0.9	19
48	The influence of moisture content on the acoustic emission at threshold of rock destruction. Acta Geodynamica Et Geomaterialia, 2015, , 279-287.	0.3	19
49	Influence of high-temperature thermal cycles on the pore structure of red sandstone. Bulletin of Engineering Geology and the Environment, 2021, 80, 7817-7830.	1.6	18
50	Experiment study of physical and mechanical properties of sandstone after variable thermal cycles. Bulletin of Engineering Geology and the Environment, 2020, 79, 3771-3784.	1.6	17
51	Radon exhalation from temperature treated loess. Science of the Total Environment, 2022, 832, 154925.	3.9	17
52	Thermal effects on arsenic emissions during coal combustion process. Science of the Total Environment, 2018, 612, 582-589.	3.9	16
53	A study of the factors influencing the occurrence of landslides in the Wushan area. Environmental Earth Sciences, 2018, 77, 1.	1.3	16
54	Effect of heat treatment on the emission rate of radon from red sandstone. Environmental Science and Pollution Research, 2021, 28, 62174-62184.	2.7	16

#	Article	IF	CITATIONS
55	Variations in fracture toughness of SCB granite influenced by microwave heating. Engineering Fracture Mechanics, 2021, 258, 108048.	2.0	16
56	Eccentricity-paced monsoon variability on the northeastern Tibetan Plateau in the Late Oligocene high CO ₂ world. Science Advances, 2021, 7, eabk2318.	4.7	16
57	Analyses of Influencing Factors for Radon Emanation and Exhalation in Soil. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	15
58	Wave velocity and stress/strain in rock brittle failure. Environmental Earth Sciences, 2014, 72, 861-866.	1.3	14
59	Effects of NaCl concentration on electrical resistivity of clay with cooling. Journal of Applied Geophysics, 2019, 170, 103843.	0.9	14
60	Fracture Mechanical Properties of Frozen Sandstone at Different Initial Saturation Degrees. Rock Mechanics and Rock Engineering, 2022, 55, 3235-3252.	2.6	14
61	Identification of Primary Mineral Elements and Macroscopic Parameters in Thermal Damage Process of Limestone with Canonical Correlation Analysis. Rock Mechanics and Rock Engineering, 2018, 51, 1287-1292.	2.6	12
62	Effects of heating on some physical properties of granite, Shandong, China. Journal of Applied Geophysics, 2021, 193, 104410.	0.9	12
63	Effect of the pore structure of granite and gabbro after heat treatment on the radon emission rate. Environmental Science and Pollution Research, 2022, 29, 36801-36813.	2.7	12
64	The effect of thermal damage on the electrical resistivity of sandstone. Journal of Geophysics and Engineering, 2017, 14, 255-261.	0.7	11
65	Thermal effects on failure characteristics of granite with pre-existing fissures. Geotechnical Research, 2019, 6, 302-311.	0.8	11
66	Radon emission evolution and rock failure. Acta Geodaetica Et Geophysica, 2016, 51, 583-595.	0.7	10
67	Changes in color and roughness of red sandstone at high temperatures. Bulletin of Engineering Geology and the Environment, 2020, 79, 1959-1966.	1.6	10
68	New models for calculating the electrical resistivity of loess affected by moisture content and NaCl concentration. Environmental Science and Pollution Research, 2022, 29, 17280-17294.	2.7	10
69	Permeability Evolution and Rock Brittle Failure. Acta Geophysica, 2015, 63, 978-999.	1.0	9
70	Microbial consortium in a non-production biogas coal mine of eastern China and its methane generation from lignite. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 1377-1384.	1.2	9
71	The Early-Middle Pleistocene transition of Asian summer monsoon. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 545, 109636.	1.0	9
72	Effect of high temperature on physical properties of yellow sandstone. Heat and Mass Transfer, 2021, 57, 1981-1995.	1.2	9

#	Article	IF	CITATIONS
73	Variations of Strength, Resistivity and Thermal Parameters of Clay after High Temperature Treatment. Acta Geophysica, 2016, 64, 2077-2091.	1.0	8
74	Variation of wave velocity and thermal conductivity of concrete after high-temperature treatment. Environmental Earth Sciences, 2017, 76, 1.	1.3	8
75	Electrical Resistivity Evolution and Brittle Failure of Sandstone After Exposure to Different Temperatures. Rock Mechanics and Rock Engineering, 2018, 51, 639-645.	2.6	8
76	The influence of temperature and confining pressure on the cracks damage threshold and shape parameter m of igneous rock. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7, 1.	1.3	8
77	Effect of Cyclic Thermal Shock on Granite Pore Permeability. Lithosphere, 2021, 2021, .	0.6	8
78	Electric-field response based experimental investigation of unsaturated soil slope seepage. Journal of Applied Geophysics, 2017, 138, 154-160.	0.9	7
79	The effect of high temperature and pressure on rock friction coefficient: a review. International Journal of Earth Sciences, 2020, 109, 409-419.	0.9	7
80	Changes in glossiness, electrical properties and hardness of red sandstone after thermal treatment. Journal of Applied Geophysics, 2020, 175, 104005.	0.9	7
81	Microscopic mechanisms of microwave irradiation thawing frozen soil and potential application in excavation of frozen ground. Cold Regions Science and Technology, 2021, 184, 103248.	1.6	7
82	Pore characteristics and permeability changes of high-temperature limestone after rapid cooling by dry ice. Heat and Mass Transfer, 2022, 58, 1339-1352.	1.2	7
83	The thermodynamic properties variation of cemented clay after treatment at high temperatures. Construction and Building Materials, 2018, 182, 523-529.	3.2	6
84	Analysis of the characteristics of magnetic properties change in the rock failure process. Acta Geophysica, 2020, 68, 289-302.	1.0	6
85	Geoelectric response of porous media in water and grout injection processes. Journal of Central South University, 2014, 21, 4640-4645.	1.2	5
86	Rock alteration in a hydraulic engineering project in Southwest China. Arabian Journal of Geosciences, 2015, 8, 23-27.	0.6	5
87	Olivine thermal diffusivity influencing factors. Journal of Thermal Analysis and Calorimetry, 2018, 132, 7-16.	2.0	5
88	Experiment study on the correlation between the CO ₂ adsorption capacity and electrical resistivity of coal with temperature effect. , 2019, 9, 924-933.		5
89	Combined effects of cooling rate and salt on physical properties of yellow sandstone collected from Eastern China. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	5
90	Thermal effects on the electrical characteristics of Malan loess. Environmental Science and Pollution Research, 2021, 28, 15160-15172.	2.7	5

#	Article	IF	CITATIONS
91	Early-Age Hydration Reaction and Strength Formation Mechanism of Solid Waste Silica Fume Modified Concrete. Molecules, 2021, 26, 5663.	1.7	5
92	Strength and the cracking behavior of frozen sandstone containing iceâ€filled flaws under uniaxial compression. Permafrost and Periglacial Processes, 2022, 33, 160-175.	1.5	5
93	Laboratory-based geoelectric monitoring of water infiltration in consolidated ground. Hydrogeology Journal, 2018, 26, 2229-2240.	0.9	4
94	Correlation analyses of effects of temperature on physical and mechanical properties of clay. Environmental Earth Sciences, 2018, 77, 1.	1.3	4
95	A study on thermal damage mechanism of sandstone based on thermal reaction kinetics. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7, 1.	1.3	4
96	The effect of high temperature on the fracture damage of loess. Engineering Fracture Mechanics, 2022, 262, 108270.	2.0	4
97	Effect of adding solid waste silica fume as a cement paste replacement on the properties of fresh and hardened concrete. Case Studies in Construction Materials, 2022, 16, e01048.	0.8	4
98	Thermal damage analysis based on physical and mechanical indices of granodiorite. Geotechnique Letters, 2020, 10, 250-255.	0.6	3
99	Thermal effect on b-value of limestone subjected to uniaxial loading. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	3
100	Metamorphic response characteristics of yellow sandstone after heat treatment under 800–1250°C. Journal of Thermal Analysis and Calorimetry, 2022, 147, 11107-11117.	2.0	3
101	Acoustic emission characteristics of high-temperature granite through different cooling paths. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8, 1.	1.3	3
102	Stability analysis and control of embankment with solid backfill coal mining. Mining Technology: Transactions of the Institute of Materials, Minerals and Mining Section A, 2017, 126, 104-112.	0.8	2
103	Realâ€Time Geoelectric Monitoring of Seepage into Sand and Clay Layer. Ground Water Monitoring and Remediation, 2019, 39, 80-88.	0.6	2
104	Variation on thermal damage rate of granite specimen with thermal cycle treatment. High Temperature Materials and Processes, 2019, 38, 849-855.	0.6	2
105	Changes in b-values due to sandstone failure after exposure to high temperatures. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	2
106	Geoelectric Field Response to Seepage in Sand and Clay Formations. Journal of Hydrologic Engineering - ASCE, 2019, 24, 04019037.	0.8	1
107	Thermal and physical properties of concrete containing glass after cooling in different paths. Structural Concrete, 2020, 21, 1071-1081.	1.5	1
108	Effect of high temperatures on the magnetic susceptibility of loess. Environmental Science and Pollution Research, 2022, 29, 54309-54317.	2.7	1

#	Article	IF	CITATIONS
109	Prediction of strength of rock after thermal treatment through dielectric property. Quarterly Journal of Engineering Geology and Hydrogeology, 2022, 55, .	0.8	1
110	Prediction analysis of destroyed coalseam floor depth based on v-SVR algorithm. , 2011, , .		0
111	Engineering geological analysis of F <inf>53</inf> fault alteration in left dam- abutment of a hydropower station. , 2011, , .		Ο
112	Analysis on differential weathering characters of high cutting slope in Three Gorge Reservoir. , 2011, ,		0
113	Effect of Temperature and Strain Rate on the Brittleness of China Sandstone. Geofluids, 2021, 2021, 1-10.	0.3	0